Cartesian equation for the Magnetic field resulting from a single current loop?

AI Thread Summary
The discussion focuses on converting the magnetic field equation from cylindrical to Cartesian coordinates for a single current loop. The current equation is expressed in cylindrical coordinates as \vec{B}={Brc,0,Bz}, which lacks an angular component. The main challenge is that the conversion leads to a magnetic field with a zero y-component, raising questions about the validity of this outcome. The user seeks clarification on whether this is correct and how to express the cylindrical unit vector in Cartesian terms. The conversation emphasizes the need for a successful conversion to facilitate plotting in Matlab.
kilianod5150
Messages
2
Reaction score
0
Hello

I am carrying out some analysis on the magnetic field generated over a 3D region by a single current loop. The present form of the equations is in cylindrical coordinates and is as follows
\vec{B}={Brc,0,Bz}
There is no angular component in this present from.
Note: The following website contains the formulas in question:
http://www.netdenizen.com/emagnet/offaxis/iloopoffaxis.htm

My question is as follows. How could one convert a complex cylindrical equation such as this to Cartesian coordinates? The main aim of this is to plot the fields in Matlab, if the equations were in cartesian form it would simply greatly my analysis.

The main problem I seem to encounter is that since there is no angle component, using conversions such as x=r*cos(theta) and y=r*sin(theta) do n0t seem to make sense as it would imply that there is only an x component and no y component.

I tried using Mathematica to convert the equations using the ConvertToCartesian command to no avail.

Any help with this problem would be greatly appreciated.

Regards

Kilian
 
Physics news on Phys.org
Just use r=\sqrt{x^2 + y^2}.
 
Thanks for the reply, I had thought of using that but i still have the problem where there is no y component of the magnetic field.
In other words converting B(rc,phi,z)=(Brc(rc,theta,z),0,Bz(rc,theta,z)) would result in B(x,y,z)=(Bx(x,y,z),0,Bz(x,y,z)). The By(x,y,z) component is zero, is this correct? Or is there a way to expand the rc unit vector into x and y parts?
 
It may be shown from the equations of electromagnetism, by James Clerk Maxwell in the 1860’s, that the speed of light in the vacuum of free space is related to electric permittivity (ϵ) and magnetic permeability (μ) by the equation: c=1/√( μ ϵ ) . This value is a constant for the vacuum of free space and is independent of the motion of the observer. It was this fact, in part, that led Albert Einstein to Special Relativity.
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...
Back
Top