Center of mass and REduced mass

AI Thread Summary
The discussion centers on the relationship between reduced mass and center of mass in multi-body systems. The reduced mass formula is traditionally defined for two masses, but participants explore its extension to multiple masses, suggesting a generalized form. The center of mass is clarified as a positional concept rather than a mass itself, emphasizing its role in simplifying calculations in two-body problems. A more complex formulation involving a matrix for N-particle systems is proposed, showcasing how energy equations can be adapted. Overall, the conversation highlights the mathematical intricacies and physical implications of these concepts in physics.
PeteGt
Messages
49
Reaction score
0
I forget how these two relate both conceptually and mathematically...any help?
 
Physics news on Phys.org
\mu = \frac{m_1m_2}{m_1 + m_2}

m_{cm} = \frac{\sum x_n m_n}{\sum m_n}

cookiemonster
 
So what about more than one mass? So would the reduced mass formula really be 1/u=1/m1+1/m2+1/m3+...
 
Honestly, I've never seen it for more than two masses, but I suppose the most logical extension would be

\frac{1}{\mu} = \sum \frac{1}{m_n}

That being said, the above expression may have absolutely no physical meaning. I don't know.

Anyway, for the uses of the center of mass and reduced mass together is a 2-body problem. The math simplifies in the center of mass coordinate system and when you use the center of mass coordinate system, the math involved makes it convenient to define reduced mass as such.

cookiemonster

Edit: I say "the most logical extension" because reduced mass is also defined as

\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}

You can use a bit of algebra to demonstrate that this equation is simply a rearrangement of the first one I gave.

Edit2: Which I would have known you already knew had I read your post more carefully...
 
Last edited:
I think the reduced-mass concept should be generalized to a matrix rather than to a scalar. If we consider a N-particle system where the particle positions x(i) are measured relative to the C.M., we have, for a conservative system, that the energy equation (f.ex.) may be written as:
1/2*MV^(2)+1/2*(v^(T)*Q*v)+U=const.
Here, M is the system's total mass, V is the speed of C.M, U is the potential energy; whereas v is the N-vector of particle velocities, v^(T)=(v(1),..,v(N))
(T is for transpose)
(v(i)=dx(i)/dt)).
Q is the N*N diagonal mass matrix, Q(j,j)=m(j), where m(j) is the mass of the j-th particle.
(The resulting product of velocities, f.ex. v(j)^(2) is the dot product if v(j) is a vector.)

We have, by definition of particle positions relative to C.M, m(i)*x(i)=0, where summing over i=1,..N is implied.
Hence, we may eliminate a particle (the N'th, f.ex.), from our system, and
we represent the other particles by their distances x(i,N) (i=1,..N-1):
x(i)=x(N)+x(i,N), i=1,..N-1, v(i,N)=dx(i,N)/dt, vrel^(T)=(v(1,N),...v(N-1,N))

The energy equation may now be rewritten as:
1/2*MV^(2)+1/2*(vrel^(T)*R*vrel)+U=const.

Here, R is the (N-1)*(N-1) reduced mass matrix with respect to particle N:

R(j,j)=r(j,j)=m(j)(M-m(j))/M
R(i,j)=R(j,i)=-r(i,j), r(i,j)=m(i)*m(j)/M (i not equal to j)

We see that r(i,j) is less than both m(i) and m(j).
Again, products of velocities should be regarded as inner products if the velocities v(i,N) are vectors.
 
cookiemonster said:
m_{cm} = \frac{\sum x_n m_n}{\sum m_n}

cookiemonster

The centre of mass is a position, not a mass.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top