Center of Mass Projectile Problem

AI Thread Summary
The discussion centers on a projectile problem involving a mass of 19.4 kg fired at an angle of 57 degrees with an initial speed of 81.0 m/s. The projectile explodes into two equal fragments at its peak, with one fragment falling vertically. The user calculates the center of mass at 776.1 m and attempts to find the landing position of the fragments, but encounters confusion regarding the negative position for one fragment and the correct application of the center of mass equation. The user realizes that they incorrectly set the center of mass as the origin, leading to errors in their calculations. Clarification is sought on the correct approach to determining the positions of the fragments after the explosion.
itsme24
Messages
8
Reaction score
0
Hi, sorry stuck again!

Here is the problem:

A projectile of mass 19.4 kg is fired at an angle of 57.0 degrees above the horizontal and with a speed of 81.0 m/s. At the highest point of its trajectory the projectile explodes into two fragments with equal mass, one of which falls vertically with zero initial speed. You can ignore air resistance.

And here is what I did:

I first found the center of mass when y = 0 since the center of mass follows the trajectory of the parabola I used the equation:

y(x) = tan(theta)x - .5g(x/(V_i*cos(theta))^2

y(x) = 0
theta = 57 degrees
g= 9.8m/s^2
V_i = 81.0 m/s so...

0 = tan(57)x - 4.9(x/(8.1*cos(57))^2
0 = 1.54x - 0.00252x^2

quadratic:
x = 0, 776.1m = center of mass

Then it says that the first fragment drops vertically at the highest point and this is partly where I get confused since with my math I assumed that means straight down, correct me if I'm wrong. So I found t when V_y = 0 to find x at that point.

V_y = 0 = V_yi + a_y*t

0= 81.0*sin(57) - 9.8t
t= 6.93s

x when t = 6.93s which should give me the position fragment 1 landed:

x_f1 = x_i + V_ix*t + 0.5a_x*t^2
x_f1 = 0 + 81.0cos(57) + 0
x_f1 = 305.72m

Then I just had to find x of fragment 2:

x_cm = (m_f1*x_f1) + (m_f2*x_f2) / (m_f1 + m_f2)

so, I made the center of mass the 0 coordinate:

776.1m = [(9.7kg*-470.4m) + (9.7kg*x_f2)] / (9.7kg*2)

x_f2 = 2020m, which turned out to be wrong! :eek:

I'm sorry this problem is so long :frown:
 
Physics news on Phys.org
Why did x_{f1} become -470.4m, when it clearly states it's 305.27m above?

Also m_1 + m_2 is 19.4, not 9.7
 
ya sorry I had it written 9.7kg*2, I did use 19.4.

But for the x_f1 I put it to -470.4m because I put the center of mass that I found as the origin in a new axes for calculating x_f2's position.

so 776.1m became 0, which means that 776.1m-305.72m became x_f1 and since it's to the left of the new origin it would be negative. Should I not have done that?
 
If I left it at 305.27m then the math would be

776.1m = [(9.7kg*305.27m) + 9.7kg*x_f2] / 19.4kg = 1246.93 m and that answer was not correct either :(
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top