Central limit theorem - finding cumulants

LmdL
Messages
72
Reaction score
1

Homework Statement


Given:
y=\frac{\sum_{i}x_i-N\left \langle x \right \rangle}{\sqrt{N}}

Show that the cumulants of y are:
<br /> \begin{matrix}<br /> \left \langle y \right \rangle_c=0&amp; &amp; \left \langle y^2 \right \rangle_c=\left \langle x^2 \right \rangle_c &amp; &amp; \left \langle y^m \right \rangle_c=\left \langle x^m \right \rangle_c N^{1-m/2}\begin{matrix}<br /> &amp; for &amp; m&gt;2<br /> \end{matrix}<br /> \end{matrix}<br />

Homework Equations


Generating function:
\tilde{p}\left ( k \right )=\sum_{n=0}^{\infty }\frac{\left ( -ik \right )^n}{n!}\left \langle x^n \right \rangle
Cumulant generating function:
ln \left ( \tilde{p}\left ( k \right ) \right )=\sum_{n=0}^{\infty }\frac{\left ( -ik \right )^n}{n!}\left \langle x^n \right \rangle_c

For independent
X=\left ( x_1,x_2,...,x_N \right )
if
y=a_0+a_1x_1+a_2x_2+...+a_Nx_N
then:
\tilde{p}_y\left ( k \right )=e^{-ika_0}\prod_{i}\tilde{p}_i\left ( a_ik \right )

The Attempt at a Solution


In my case:
y=\frac{\sum_{i}x_i-N\left \langle x \right \rangle}{\sqrt{N}}=-\frac{N\left \langle x \right \rangle}{\sqrt{N}}+\frac{1}{\sqrt{N}}x_1+...+\frac{1}{\sqrt{N}}x_N
that is:
\begin{matrix} a_0=-\frac{N\left \langle x \right \rangle}{\sqrt{N}} &amp; &amp; a_1=...=a_N=\frac{1}{\sqrt{N}}<br /> \end{matrix}
Substituting into
\tilde{p}_y\left ( k \right )=e^{-ika_0}\prod_{i}\tilde{p}_i\left ( a_ik \right )
gives:
\tilde{p}_y\left ( k \right )=e^{\frac{ikN\left \langle x \right \rangle}{\sqrt{N}}}\prod_{i}\tilde{p}_i\left ( \frac{1}{\sqrt{N}}k \right )
Cumulant generating function:
ln \left ( \tilde{p}_y\left ( k \right ) \right )=\frac{ikN\left \langle x \right \rangle}{\sqrt{N}}+\sum_{i}ln\left ( \tilde{p}_i\left ( \frac{1}{\sqrt{N}}k \right ) \right )
Next step I tried is to represent ln function as series:
\sum_{n=0}^{\infty }\frac{\left ( -ik \right )^n}{n!}\left \langle y^n \right \rangle_c = \frac{ikN\left \langle x \right \rangle}{\sqrt{N}}+\sum_{i}^{N}\sum_{n=0}^{\infty }\frac{\left ( -i\frac{1}{\sqrt{N}}k \right )^n}{n!}\left \langle x^n \right \rangle_c=\frac{ikN\left \langle x \right \rangle}{\sqrt{N}}+N\sum_{n=0}^{\infty }\frac{\left ( -i\frac{1}{\sqrt{N}}k \right )^n}{n!}\left \langle x^n \right \rangle_c
And, finally, here I'm stuck. Can someone help me how to continue from here?
Thanks in advance.
 
Physics news on Phys.org
Doesn't matter. Already solved it.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top