Central Limit Theorem Variation for Chi Square distribution?

dharavsolanki
Messages
77
Reaction score
0
Central Limit Theorem Variation for Chi Square distribution?

If this question fits into Homework Help, please move it over there. I'm not too sure.

I encountered the following problem:

An experiment E is performed n times. Each repetition of E results in one and only one of the events Ai, i = 1, 2, 3, ..., k. Suppose that p(Ai) = pi and Let ni be the number of times Ai occurs among the n repetitions of E, n1 + n2 + ... +nk = n.

Also, let D2 = Summation of i from 1 to k of \frac{(n_i - np_io)^2}{np_io}

If n is sufficiently large and if pi = pio then show that the distribution of D2 has approximately the chi square distribution with k-1 degrees of freedom.

Now, this problem seems fairly similar to a simple proof the central limit theorem. I am damn sure that this problem involves finding the mgf of D2, evaluating it and saying that it is the same as the mgf of a chi square function.

Can you help me out with setting up the equation? that'll be a big help! Thank you!

I've given it an attempt, but one attempt at setting up the mgf is all that i ask. Also, if there is any other way which does not involve mgf (i being wrong), please mentione that! Thank you!
 
Last edited:
Physics news on Phys.org


I have seen a proof of this theorem, which has been proved by assuming the value of the parameter k = 2. Essentially, it just means that the theorem has been proved using ony the asumption tht only two events may occur.

p1 + p2 = 1 and n1 + n2 = n

Using this and substituting in the value of D2, we arrive at a uncture where n1 is defined as sum of j from 1 to n of Yij, where Yij = 1 is A1 occurs on the jth repetition and 0 elsewhere.

Now, central limit theorem is used over the variable n1, and if n is large, it has approximately a normal distribution.


I distinctly remember someone mentioning the use of Principle of Mathematical Induction to solve this problem. Can anyone of you solve this problem using the PMI? Will be a big help! No mgf involved till now!
 


Begin by looking at the distribution of each

<br /> \frac{(n_i - np_io)}{\sqrt{np_io}}<br />

and not that even though there are n of them they satisfy one linear relationship.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top