Centralizers and elements of odd order

  • Thread starter Thread starter wakko101
  • Start date Start date
  • Tags Tags
    Elements
wakko101
Messages
61
Reaction score
0
I was going over a proof in which the following is given:

if abb=bba and b is of odd order, then ab=ba (i.e. if b^2 centralizes a then so does b)

I'm not sure why this is so. Any clarification would be appreciated.

Cheers,
W. =)
 
Physics news on Phys.org
b^2 commutes with a. If b has odd order then b^(2n+1)=e for some n. So b^(2n+1)a=a(b^(2n+1)). Do you see it now?
 
I believe so...
b^(2n)ba = ab^(2n)b
b^2n(ba) = b^2n(ab) since abb = bba
ba = ab

If that's it, then cheers! =)
 
wakko101 said:
I believe so...
b^(2n)ba = ab^(2n)b
b^2n(ba) = b^2n(ab) since abb = bba
ba = ab

If that's it, then cheers! =)

Cheers!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top