Chain shape (Euler-Lagrange equations)

  • Thread starter Thread starter neworder1
  • Start date Start date
  • Tags Tags
    Chain Shape
neworder1
Messages
64
Reaction score
0
A chain with uniform linear density d and length L is tied at two ends to the ceiling. How to find its shape using Euler-Lagrange equations? (I know it can be done with other methods, but I want to know how to do it using E-L).
 
Physics news on Phys.org
First of all, you need to know what quantity is to be minimized. Next, you'll also have to consider the constraint (in the form of an integral) that the total length of the chain is L. So, use a lagrange undetermined multiplier so that you have the functional g = f + \lambda f_1[/tex], where f is the integrand which needs to be minimized and f_1 is the constraint. If you apply the Euler Lagrange equations to g, you'll be able to get the shape of the chain. To find \lambda, you'll need to use the constraint. Can you solve it from here?
 
Actually, I don't think it can be done without E-L. How would you do it?
 
Yes, it can be done without E-L "manually", i.e. by writing forces, angles etc., but it's a very tedious way.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top