devd said:
Yes, but where I got confused was that the entries of the column vectors themselves are vectors.
$$v_j=\sum_jS_{ij}w_i,~~~~\text{for all}~ j.$$
You need to have a "##v_i##" instead of a "##v_j##" on the left hand side of that equation.
Yes, the terms involved in that sum , ##S_{i,j} w_i##, are vectors, but we aren't yet dealing with any representation of ##w_i## as a vector of numbers. So, effectively, ##w_i## plays the role of a variable, just like the typical uses of "##x##" and "##y##".
Let, U be a linear transformation on the vector space A, and ##\{v_j\}## be a basis. Then,
$$Uv_j=\sum_iU_{ij}v_i$$
Yes, those equations ( considering all ##i##) define a linear transformation ##U##
expressed in the ##v##-basis.
To interpret each equation as involving a matrix multiplication ##U v_j = b_j##, we must adopt some convention about how ##v_j## is represented as a column vector. Using "##v_j##" as ambiguous notation, we could say that ##v_j## represents a column vector of "variables" that are all zeroes except for the variable "##v_j##" in its ##j##th entry. Or we could say that ##v_j## ( in ##v##-basis) will be a column vector with a 1 in the ##j##th entry of the column and zeroes elsewhere. So interpreting the left hand side of the equation as matrix multiplication
does involve a some convention about how ##v_j## is represented as a column vector.
We must also adopt a similar convention about the column vector on the right hand side. We might say it represents a linear combination of vectors from the ##v##-basis and that the ##k##th entry of the column vector on the right side the equation represents the coefficient of ##v_k## in the linear combination.
Now, we define
$$\sum_iU_{ij}v_i=w_j$$
It isn't clear what you are defining. Are you defining ##U## or are you defining the ##w_j## ?
If we take the ##w##-basis as given, you are defining ##U## as a matrix whose ##j##th column consists of the coefficients needed to express ##w_j## as a linear combination of vectors in the ##v##-basis.
However, the usual way to express the ##w##-basis in terms of the ##v##-basis in matrix form would be to consider the column vector ##w = (w_1,w_2,w_3,..)## as the ##w##-basis expressed as a vector of "variables", and the column vector ##w = (v_1,v_2,v_3,...)## as the ##v##-basis expressed a vector of variables, and to define the matrix ##U## to satisfy ##w = Uv##.
This definition would imply ##w_i = \sum_j U_{i,j} v_j ##, so the summation is over the column index "##j##" instead of the row index "##i##".