Change of independent variables problem

Physics news on Phys.org
Sorry, I see no image.
 
Try this link.

garciarussellchem.angelfire.com/Photo/Change_of_independent_variables_problem.jpg

Just paste it in.
 
Using the insert link option on the tools somehow made the link fail. ?
 
Coffeepower said:
Using the insert link option on the tools somehow made the link fail. ?

IIRC, Angelfire (and a number of other server systems) has a barrier against "hotlinking". You can cut'n'paste a link into your browser entry and it will accept that (I got that to work), but will not allow linking from an embedded URL in a post.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top