Chestermiller said:
ΔU=0ΔU=0\Delta U=0 would have to be accompanied by some consideration of the standard internal energy change for the reaction and the change in sensible heat of the products.
I would do like I do if I have to work with enthalpy:
##U_A = U_B##
##U_A = \sum n_{i, A}( u_i(T_r) + \int_{T_r}^{T_A} c_{v, i} dT)##
where ##T_r## is an arbitrary temperature (of reference).
##U_B = \sum n_{i, B} (u_i(T_r) + \int_{T_r}^{T_B} c_{v, i} dT) = \sum (n_{i, A} + \lambda*v_i)(u_i(T_r) + \int_{T_r}^{T_A} c_{v, i} dT + \int_{T_A}^{T_B} c_{v, i} dT ) ##
where ##\lambda## is the extent of reaction and ##v_i## is the stoichiometric coefficient for the i-specie. I do the product and I get:
##U_B = \sum n_{i, A} (u_i(T_r) + \int_{T_r}^{T_A} c_{v, i} dT) + \sum (n_{i, A} \int_{T_A}^{T_B} c_{v, i} dT ) + \sum \lambda*v_i * (u_i(T_r) + \int_{T_r}^{T_A} c_{v, i} dT + \int_{T_A}^{T_B} c_{v, i} dT )##
##U_B = \sum n_{i, A} (u_i(T_r) + \int_{T_r}^{T_A} c_{v, i} dT) + \sum (n_{i, A} \int_{T_A}^{T_B} c_{v, i} dT ) + \sum \lambda*v_i * (u_i(T_r) + \int_{T_r}^{T_B} c_{v,i} dT)##
So ##U_A-U_B## is:
##U_A-U_B = \sum (n_{i, A} \int_{T_A}^{T_B} c_{v, i} dT ) + \sum \lambda*v_i * (u_i(T_r) + \int_{T_r}^{T_B} c_{v,i} dT) = 0##
Extracting ##\lambda## from the summation I get:
## \sum (n_{i, A} \int_{T_A}^{T_B} c_{v, i} dT ) = - \lambda \sum v_i * (u_i(T_r) + \int_{T_r}^{T_B} c_{v,i} dT)##
Now I set ##u(T_r) + \int_{T_r}^{T_B} c_{v,i} dT = Δu_{formation, i}(T)## and so ##\sum v_i*Δu(T)_{formation, i} = ΔU(T)_{reaction}## just like I would do with ##h##.
Is it wrong ?