Change of variables/total differential derivation

thomas49th
Messages
645
Reaction score
0

Homework Statement

http://gyazo.com/e7dc83f3f93d01391663d02bf92c0b26

Homework Equations



I am trying to derive equation 6 from 5 using 1, but I haven't got anywhere. This isn't a homework question, just an information sheet. Can someone show me the steps (no jumps please) on obtaining equation 6. After that, for practice I will attempt df/dv

Thanks
:)
 
Physics news on Phys.org
thomas49th said:

Homework Statement



attachment.php?attachmentid=45833&stc=1&d=1333420017.png

http://gyazo.com/e7dc83f3f93d01391663d02bf92c0b26

Homework Equations



I am trying to derive equation 6 from 5 using 1, but I haven't got anywhere. This isn't a homework question, just an information sheet. Can someone show me the steps (no jumps please) on obtaining equation 6. After that, for practice I will attempt df/dv

Thanks
:)
It's pretty basic.

Group the terms in (5):
First distribute \displaystyle \left.\frac{\partial f}{\partial x}\right|_y\text{ and }\left.\frac{\partial f}{\partial y}\right|_x\ .θ

Then factor out du & dv .

\displaystyle df=\left(<br /> \left.\frac{\partial f}{\partial x}\right|_y \left.\frac{\partial x}{\partial u}\right|_v<br /> +\left.\frac{\partial f}{\partial y}\right|_x \left.\frac{\partial y}{\partial u}\right|_v<br /> \right)du +\left(<br /> \left.\frac{\partial f}{\partial x}\right|_y \left.\frac{\partial x}{\partial v}\right|_u<br /> +\left.\frac{\partial f}{\partial y}\right|_x \left.\frac{\partial y}{\partial v}\right|_u<br /> \right)dv<br />



 

Attachments

  • e7dc83f3f93d01391663d02bf92c0b26.png
    e7dc83f3f93d01391663d02bf92c0b26.png
    23 KB · Views: 1,243
SammyS said:
It's pretty basic.

Group the terms in (5):
First distribute \displaystyle \left.\frac{\partial f}{\partial x}\right|_y\text{ and }\left.\frac{\partial f}{\partial y}\right|_x\ .θ

Then factor out du & dv .

\displaystyle df=\left(<br /> \left.\frac{\partial f}{\partial x}\right|_y \left.\frac{\partial x}{\partial u}\right|_v<br /> +\left.\frac{\partial f}{\partial y}\right|_x \left.\frac{\partial y}{\partial u}\right|_v<br /> \right)du +\left(<br /> \left.\frac{\partial f}{\partial x}\right|_y \left.\frac{\partial x}{\partial v}\right|_u<br /> +\left.\frac{\partial f}{\partial y}\right|_x \left.\frac{\partial y}{\partial v}\right|_u<br /> \right)dv<br />




I can easily get to the second equation
\displaystyle df=\left(<br /> \left.\frac{\partial f}{\partial x}\right|_y \left.\frac{\partial x}{\partial u}\right|_v<br /> +\left.\frac{\partial f}{\partial y}\right|_x \left.\frac{\partial y}{\partial u}\right|_v<br /> \right)du +\left(<br /> \left.\frac{\partial f}{\partial x}\right|_y \left.\frac{\partial x}{\partial v}\right|_u<br /> +\left.\frac{\partial f}{\partial y}\right|_x \left.\frac{\partial y}{\partial v}\right|_u<br /> \right)dv<br />

but how does that become equation 6? We've gone from 4 terms to 6 and remove dv and du

Thanks
 
thomas49th said:
I can easily get to the second equation
\displaystyle df=\left(<br /> \left.\frac{\partial f}{\partial x}\right|_y \left.\frac{\partial x}{\partial u}\right|_v<br /> +\left.\frac{\partial f}{\partial y}\right|_x \left.\frac{\partial y}{\partial u}\right|_v<br /> \right)du +\left(<br /> \left.\frac{\partial f}{\partial x}\right|_y \left.\frac{\partial x}{\partial v}\right|_u<br /> +\left.\frac{\partial f}{\partial y}\right|_x \left.\frac{\partial y}{\partial v}\right|_u<br /> \right)dv<br />

but how does that become equation 6? We've gone from 4 terms to 6 and remove dv and du

Thanks
All that equation 6 gives is the coefficient of du.

The coefficient of dv is similar.

Compare equation 1 with \displaystyle df=\left( <br /> \left.\frac{\partial f}{\partial x}\right|_y \left.\frac{\partial x}{\partial u}\right|_v <br /> +\left.\frac{\partial f}{\partial y}\right|_x \left.\frac{\partial y}{\partial u}\right|_v <br /> \right)du +\left( <br /> \left.\frac{\partial f}{\partial x}\right|_y \left.\frac{\partial x}{\partial v}\right|_u <br /> +\left.\frac{\partial f}{\partial y}\right|_x \left.\frac{\partial y}{\partial v}\right|_u <br /> \right)dv\ .
 
Awesome. I see :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top