- #1

- 30

- 1

I dont get this integral (Peskin & Schroeder P. 27 )

##\int {{{{d^3}p} \over {{{\left( {2\pi } \right)}^3}}}{1 \over {{E_{\bf{p}}}}}{e^{i{\bf{p}} \cdot {\bf{r}}}}} = {{2\pi } \over {{{\left( {2\pi } \right)}^3}}}\int\limits_0^\infty {dp{{{p^2}} \over {2{E_{\bf{p}}}}}{{{e^{ipr}} - {e^{ - ipr}}} \over {ipr}}} ##.

Actualy I dont get the next stage iethr :(

## = {{ - i} \over {2{{\left( {2\pi } \right)}^2}r}}\int\limits_{ - \infty }^\infty {dp{{p{e^{ipr}}} \over {\sqrt {{p^2} + {m^2}} }}} ##.

Thanx in advence :)