Changing z Value in Mathematica: Ideas?

  • Thread starter Thread starter B.Sam
  • Start date Start date
  • Tags Tags
    Mathematica
AI Thread Summary
The discussion focuses on modifying the z-value in Mathematica's Table function to achieve specific output formats. A user seeks to change the z-value dynamically based on the x-value, proposing a solution with the expression Table[{x, -1, 1-x}. The conversation then shifts to creating a 3D graphic representation using Graphics3D, where users discuss simplifying the text annotations within the graphic. The final contributions include suggestions for combining and optimizing the code for generating a wurtzite structure, emphasizing a collaborative effort to refine the Mathematica code. Overall, the thread highlights practical coding techniques in Mathematica for visualizing mathematical structures.
B.Sam
Messages
4
Reaction score
0
it could be stupid question for you...

if I input

Table[{x,-1,z},{x,0,6,1}]

I can get {{0,-1,z},{1,-1,z},{2,-1,z},{3,-1,z},{4,-1,z},{5,-1,z},{6,-1,z}}

is it possible to change the z value only...

what I want to get is like

{{0,-1,1},{1,-1,0},{2,-1,-1},{3,-1,-2},{4,-1,-3},{5,-1,-4},{6,-1,-5}}

as long as it shows the results like this with simple expression, it will be helpfull

have any idea?
 
Engineering news on Phys.org
It looks like you want z to be equal to 1 - x.
So how about

Table[{x,-1,1-x},{x,0,6,1}]

?
 
that is easy!
great help

In addition,

I would like to get a resutls
like this
Graphics3D[{{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x, -1, 3 - x}, {x, -1, 3}],
Mod[Total[#], 2] == 0 &]}, Text[{-1, -1, 4}, {-1, -1, 4}],
Text[{0, -1, 3}, {0, -1, 3}], Text[{1, -1, 2}, {1, -1, 2}],
Text[{2, -1, 1}, {2, -1, 1}], Text[{3, -1, 0}, {3, -1, 0}]}]

is there anyway to simplify the Text part!

getting there!

even there are many things to ask...

I would like to sort it out myself first!

thank you very much
 
How about putting it in the table as well?
Code:
Graphics3D[{
  {{RGBColor[1, 0, 0, .5], Sphere[#, 0.2]}, Text[#, #]} & /@ 
   Select[Table[{x, -1, 3 - x}, {x, -1, 3}], Mod[Total[#], 2] == 0 &]
  }]
 
it is easy!
fantastic!
basically, I have tried to make wurtzite structure by using mathematica.
I think that I have done it.
here is the code which I have done (this the best results in my ability)
is there any way to simplify this results


Graphics3D[{

(* the first layer of Ga atom *)

{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x, -1, 1 - x}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x, 0, 0 - x}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x, 1, -1 - x}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x, 2, -2 - x}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x, 3, -3 - x}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},

(* the second layer of Ga atom in [0001] direction *)

{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x, 0, 2 - x}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x, 1, 1 - x}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x, 2, 0 - x}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x, 3, -1 - x}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x, 4, -2 - x}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},

(* the third layer of Ga atom in [0001] direction *)

{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x + 4/3, -1 + 4/3, 1 - x + 4/3}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x + 4/3, 0 + 4/3, 0 - x + 4/3}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x + 4/3, 1 + 4/3, -1 - x + 4/3}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x + 4/3, 2 + 4/3, -2 - x + 4/3}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x + 4/3, 3 + 4/3, -3 - x + 4/3}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},

(* the fourth layer of Ga atom in [0001] direction *)

{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x + 4/3, 0 + 4/3, 2 - x + 4/3}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x + 4/3, 1 + 4/3, 1 - x + 4/3}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x + 4/3, 2 + 4/3, 0 - x + 4/3}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x + 4/3, 3 + 4/3, -1 - x + 4/3}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{x + 4/3, 4 + 4/3, -2 - x + 4/3}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 0 &]},

(* the fifth layer of Ga atom in [0001] direction *)

{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{(x + 4/3) + 4/3, (-1 + 4/3) + 4/3, (1 - x + 4/3) +
4/3}, {x, -1, 3, 1}], Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{(x + 4/3) + 4/3, (0 + 4/3) + 4/3, (0 - x + 4/3) + 4/
3}, {x, -1, 3, 1}], Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{(x + 4/3) + 4/3, (1 + 4/3) + 4/3, (-1 - x + 4/3) +
4/3}, {x, -1, 3, 1}], Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{(x + 4/3) + 4/3, (2 + 4/3) + 4/3, (-2 - x + 4/3) +
4/3}, {x, -1, 3, 1}], Mod[Total[#], 2] == 0 &]},
{RGBColor[1, 0, 0, .5],
Sphere[#, 0.2] & /@
Select[Table[{(x + 4/3) + 4/3, (3 + 4/3) + 4/3, (-3 - x + 4/3) +
4/3}, {x, -1, 3, 1}], Mod[Total[#], 2] == 0 &]},

(* the first layer of N atom *)

{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{x + 1/2, -1 + 1/2, 1 - x + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{x + 1/2, 0 + 1/2, 0 - x + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{x + 1/2, 1 + 1/2, -1 - x + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{x + 1/2, 2 + 1/2, -2 - x + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{x + 1/2, 3 + 1/2, -3 - x + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},

(* the second layer of N atom *)

{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{x + 1/2, 0 + 1/2, 2 - x + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{x + 1/2, 1 + 1/2, 1 - x + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{x + 1/2, 2 + 1/2, 0 - x + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{x + 1/2, 3 + 1/2, -1 - x + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{x + 1/2, 4 + 1/2, -2 - x + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},

(* the third layer of N atom *)

{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{(x + 4/3) + 1/2, (-1 + 4/3) + 1/2, (1 - x + 4/3) +
1/2}, {x, -1, 3, 1}], Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{(x + 4/3) + 1/2, (0 + 4/3) + 1/2, (0 - x + 4/3) + 1/
2}, {x, -1, 3, 1}], Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{(x + 4/3) + 1/2, (1 + 4/3) + 1/2, (-1 - x + 4/3) +
1/2}, {x, -1, 3, 1}], Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{(x + 4/3) + 1/2, (2 + 4/3) + 1/2, (-2 - x + 4/3) +
1/2}, {x, -1, 3, 1}], Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{(x + 4/3) + 1/2, (3 + 4/3) + 1/2, (-3 - x + 4/3) +
1/2}, {x, -1, 3, 1}], Mod[Total[#], 2] == 1.5 &]},

(* the fourth layer of N atom *)

{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{(x + 4/3) + 1/2, (0 + 4/3) + 1/2, (2 - x + 4/3) + 1/
2}, {x, -1, 3, 1}], Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{(x + 4/3) + 1/2, (1 + 4/3) + 1/2, (1 - x + 4/3) + 1/
2}, {x, -1, 3, 1}], Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[
Table[{(x + 4/3) + 1/2, (2 + 4/3) + 1/2, (0 - x + 4/3) + 1/
2}, {x, -1, 3, 1}], Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{(x + 4/3) + 1/2, (3 + 4/3) + 1/2, (-1 - x + 4/3) +
1/2}, {x, -1, 3, 1}], Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{(x + 4/3) + 1/2, (4 + 4/3) + 1/2, (-2 - x + 4/3) +
1/2}, {x, -1, 3, 1}], Mod[Total[#], 2] == 1.5 &]},

(* the fifth layer of N atom *)

{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{((x + 4/3) + 4/3) + 1/2, ((-1 + 4/3) + 4/3) + 1/
2, ((1 - x + 4/3) + 4/3) + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{((x + 4/3) + 4/3) + 1/2, ((0 + 4/3) + 4/3) + 1/
2, ((0 - x + 4/3) + 4/3) + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[
Table[{((x + 4/3) + 4/3) + 1/2, ((1 + 4/3) + 4/3) + 1/
2, ((-1 - x + 4/3) + 4/3) + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{((x + 4/3) + 4/3) + 1/2, ((2 + 4/3) + 4/3) + 1/
2, ((-2 - x + 4/3) + 4/3) + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
{RGBColor[1, 5, 4, .5],
Sphere[#, 0.1] & /@
Select[Table[{((x + 4/3) + 4/3) + 1/2, ((3 + 4/3) + 4/3) + 1/
2, ((-3 - x + 4/3) + 4/3) + 1/2}, {x, -1, 3, 1}],
Mod[Total[#], 2] == 1.5 &]},
 
that was too long
so here is rest part of it
just combine together!

Thick,

(*bonding between the first Ga atom layer and the first N atom in [
0001] direction*)

{RGBColor[0, 1, 0],
Line[Table[{{x, -1, 1 - x}, {x + 1/2, -1 + 1/2,
1 - x + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x, 0, 0 - x}, {x + 1/2, 0 + 1/2,
0 - x + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x, 1, -1 - x}, {x + 1/2,
1 + 1/2, -1 - x + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x, 2, -2 - x}, {x + 1/2,
2 + 1/2, -2 - x + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x, 3, -3 - x}, {x + 1/2,
3 + 1/2, -3 - x + 1/2}}, {x, -1, 3, 1}]]},

(*bonding between the first Ga atom layer and the first N atom in [
0001] direction*)

{RGBColor[0, 1, 0],
Line[Table[{{x, 0, 2 - x}, {x + 1/2, -1 + 1/2,
1 - x + 1/2}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x, 0, 2 - x}, {(x + 1/2) - 1, (-1 + 1/2) + 1,
1 - x + 1/2}}, {x, 0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x, 0,
2 - x}, {(x + 1/2) - 1, -1 + 1/2, (1 - x + 1/2) + 1}}, {x, 0,
3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x, 1, 1 - x}, {x + 1/2, 0 + 1/2,
0 - x + 1/2}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x, 1, 1 - x}, {(x + 1/2) - 1, (0 + 1/2) + 1,
0 - x + 1/2}}, {x, 0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x, 1, 1 - x}, {(x + 1/2) - 1,
0 + 1/2, (0 - x + 1/2) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x, 2, 0 - x}, {x + 1/2,
1 + 1/2, -1 - x + 1/2}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x, 2,
0 - x}, {(x + 1/2) - 1, (1 + 1/2) + 1, -1 - x + 1/2}}, {x, 0,
3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x, 2, 0 - x}, {(x + 1/2) - 1,
1 + 1/2, (-1 - x + 1/2) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x, 3, -1 - x}, {x + 1/2,
2 + 1/2, -2 - x + 1/2}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x,
3, -1 - x}, {(x + 1/2) - 1, (2 + 1/2) + 1, -2 - x + 1/2}}, {x,
0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x, 3, -1 - x}, {(x + 1/2) - 1,
2 + 1/2, (-2 - x + 1/2) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x, 4, -2 - x}, {x + 1/2,
3 + 1/2, -3 - x + 1/2}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x, 4, -2 - x}, {(x + 1/2) - 1,
3 + 1/2, (-3 - x + 1/2) + 1}}, {x, 0, 3, 1}]]},

(*bonding between the second Ga atom layer and the second N atom in \
[0001] direction*)

{RGBColor[0, 1, 0],
Line[Table[{{x, 0, 2 - x}, {x + 1/2, 0 + 1/2,
2 - x + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x, 1, 1 - x}, {x + 1/2, 1 + 1/2,
1 - x + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x, 2, 0 - x}, {x + 1/2, 2 + 1/2,
0 - x + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x, 3, -1 - x}, {x + 1/2,
3 + 1/2, -1 - x + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x, 4, -2 - x}, {x + 1/2,
4 + 1/2, -2 - x + 1/2}}, {x, -1, 3, 1}]]},

(*bonding between the second N atom layer and the third Ga atom \
layer in [0001] direction*)

{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 0 + 1/2, 2 - x + 1/2}, {x + 4/3, -1 + 4/3,
1 - x + 4/3}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 0 + 1/2,
2 - x + 1/2}, {x + 4/3 - 1, (-1 + 4/3) +
1, (1 - x + 4/3)}}, {x, 0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 0 + 1/2,
2 - x + 1/2}, {x + 4/3 - 1, -1 + 4/3, (1 - x + 4/3) + 1}}, {x,
0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 1 + 1/2, 1 - x + 1/2}, {x + 4/3, 0 + 4/3,
0 - x + 4/3}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 1 + 1/2,
1 - x + 1/2}, {x + 4/3 - 1, (0 + 4/3) + 1, (0 - x + 4/3)}}, {x,
0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 1 + 1/2, 1 - x + 1/2}, {x + 4/3 - 1,
0 + 4/3, (0 - x + 4/3) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 2 + 1/2, 0 - x + 1/2}, {x + 4/3,
1 + 4/3, -1 - x + 4/3}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 2 + 1/2,
0 - x + 1/2}, {x + 4/3 - 1, (1 + 4/3) +
1, (-1 - x + 4/3)}}, {x, 0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 2 + 1/2, 0 - x + 1/2}, {x + 4/3 - 1,
1 + 4/3, (-1 - x + 4/3) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 3 + 1/2, -1 - x + 1/2}, {x + 4/3,
2 + 4/3, -2 - x + 4/3}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2,
3 + 1/2, -1 - x + 1/2}, {x + 4/3 - 1, (2 + 4/3) +
1, (-2 - x + 4/3)}}, {x, 0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 3 + 1/2, -1 - x + 1/2}, {x + 4/3 - 1,
2 + 4/3, (-2 - x + 4/3) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 4 + 1/2, -2 - x + 1/2}, {x + 4/3,
3 + 4/3, -3 - x + 4/3}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 1/2, 4 + 1/2, -2 - x + 1/2}, {x + 4/3 - 1,
3 + 4/3, (-3 - x + 4/3) + 1}}, {x, 0, 3, 1}]]},

(*bonding between the third Ga atom layer and the third N atom \
layer in [0001] direction*)

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, -1 + 4/3,
1 - x + 4/3}, {(x + 4/3) + 1/2, (-1 + 4/3) + 1/
2, (1 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 0 + 4/3,
0 - x + 4/3}, {(x + 4/3) + 1/2, (0 + 4/3) + 1/
2, (0 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3,
1 + 4/3, -1 - x + 4/3}, {(x + 4/3) + 1/2, (1 + 4/3) + 1/
2, (-1 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3,
2 + 4/3, -2 - x + 4/3}, {(x + 4/3) + 1/2, (2 + 4/3) + 1/
2, (-2 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3,
3 + 4/3, -3 - x + 4/3}, {(x + 4/3) + 1/2, (3 + 4/3) + 1/
2, (-3 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

(*bonding between the fourth Ga atom layer and the third N atom \
layer in [0001] direction*)

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 0 + 4/3,
2 - x + 4/3}, {(x + 4/3) + 1/2, (-1 + 4/3) + 1/
2, (1 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 0 + 4/3,
2 - x + 4/3}, {((x + 4/3) + 1/2) - 1, ((-1 + 4/3) + 1/2) +
1, (1 - x + 4/3) + 1/2}}, {x, 0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 0 + 4/3,
2 - x + 4/3}, {((x + 4/3) + 1/2) - 1, (-1 + 4/3) + 1/
2, ((1 - x + 4/3) + 1/2) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 1 + 4/3,
1 - x + 4/3}, {(x + 4/3) + 1/2, (0 + 4/3) + 1/
2, (0 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 1 + 4/3,
1 - x + 4/3}, {((x + 4/3) + 1/2) - 1, ((0 + 4/3) + 1/2) +
1, (0 - x + 4/3) + 1/2}}, {x, 0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 1 + 4/3,
1 - x + 4/3}, {((x + 4/3) + 1/2) - 1, (0 + 4/3) + 1/
2, ((0 - x + 4/3) + 1/2) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 2 + 4/3,
0 - x + 4/3}, {(x + 4/3) + 1/2, (1 + 4/3) + 1/
2, (-1 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 2 + 4/3,
0 - x + 4/3}, {((x + 4/3) + 1/2) - 1, ((1 + 4/3) + 1/2) +
1, (-1 - x + 4/3) + 1/2}}, {x, 0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 2 + 4/3,
0 - x + 4/3}, {((x + 4/3) + 1/2) - 1, (1 + 4/3) + 1/
2, ((-1 - x + 4/3) + 1/2) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3,
3 + 4/3, -1 - x + 4/3}, {(x + 4/3) + 1/2, (2 + 4/3) + 1/
2, (-2 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3,
3 + 4/3, -1 - x + 4/3}, {((x + 4/3) + 1/2) -
1, ((2 + 4/3) + 1/2) + 1, (-2 - x + 4/3) + 1/2}}, {x, 0, 3,
1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3,
3 + 4/3, -1 - x + 4/3}, {((x + 4/3) + 1/2) - 1, (2 + 4/3) + 1/
2, ((-2 - x + 4/3) + 1/2) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3,
4 + 4/3, -2 - x + 4/3}, {(x + 4/3) + 1/2, (3 + 4/3) + 1/
2, (-3 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3,
4 + 4/3, -2 - x + 4/3}, {((x + 4/3) + 1/2) - 1, (3 + 4/3) + 1/
2, ((-3 - x + 4/3) + 1/2) + 1}}, {x, 0, 3, 1}]]},

(*bonding between the fourth Ga atom layer and the fourth N atom in \
[0001] direction*)

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 0 + 4/3,
2 - x + 4/3}, {(x + 4/3) + 1/2, (0 + 4/3) + 1/
2, (2 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 1 + 4/3,
1 - x + 4/3}, {(x + 4/3) + 1/2, (1 + 4/3) + 1/
2, (1 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3, 2 + 4/3,
0 - x + 4/3}, {(x + 4/3) + 1/2, (2 + 4/3) + 1/
2, (0 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3,
3 + 4/3, -1 - x + 4/3}, {(x + 4/3) + 1/2, (3 + 4/3) + 1/
2, (-1 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{x + 4/3,
4 + 4/3, -2 - x + 4/3}, {(x + 4/3) + 1/2, (4 + 4/3) + 1/
2, (-2 - x + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

(*bonding between the fourth N atom layer and the fifth Ga atom \
layer in [0001] direction*)

{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (0 + 4/3) + 1/2, (2 - x + 4/3) + 1/
2}, {(x + 4/3) + 4/3, (-1 + 4/3) + 4/3, (1 - x + 4/3) + 4/
3}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (0 + 4/3) + 1/2, (2 - x + 4/3) + 1/
2}, {((x + 4/3) + 4/3) - 1, ((-1 + 4/3) + 4/3) +
1, (1 - x + 4/3) + 4/3}}, {x, 0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (0 + 4/3) + 1/2, (2 - x + 4/3) + 1/
2}, {((x + 4/3) + 4/3) - 1, (-1 + 4/3) + 4/
3, ((1 - x + 4/3) + 4/3) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (1 + 4/3) + 1/2, (1 - x + 4/3) + 1/
2}, {(x + 4/3) + 4/3, (0 + 4/3) + 4/3, (0 - x + 4/3) + 4/
3}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (1 + 4/3) + 1/2, (1 - x + 4/3) + 1/
2}, {((x + 4/3) + 4/3) - 1, ((0 + 4/3) + 4/3) +
1, (0 - x + 4/3) + 4/3}}, {x, 0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (1 + 4/3) + 1/2, (1 - x + 4/3) + 1/
2}, {((x + 4/3) + 4/3) - 1, (0 + 4/3) + 4/
3, ((0 - x + 4/3) + 4/3) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (2 + 4/3) + 1/2, (0 - x + 4/3) + 1/
2}, {(x + 4/3) + 4/3, (1 + 4/3) + 4/3, (-1 - x + 4/3) + 4/
3}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (2 + 4/3) + 1/2, (0 - x + 4/3) + 1/
2}, {((x + 4/3) + 4/3) - 1, ((1 + 4/3) + 4/3) +
1, (-1 - x + 4/3) + 4/3}}, {x, 0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (2 + 4/3) + 1/2, (0 - x + 4/3) + 1/
2}, {((x + 4/3) + 4/3) - 1, (1 + 4/3) + 4/
3, ((-1 - x + 4/3) + 4/3) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (3 + 4/3) + 1/2, (-1 - x + 4/3) + 1/
2}, {(x + 4/3) + 4/3, (2 + 4/3) + 4/3, (-2 - x + 4/3) + 4/
3}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (3 + 4/3) + 1/2, (-1 - x + 4/3) + 1/
2}, {((x + 4/3) + 4/3) - 1, ((2 + 4/3) + 4/3) +
1, (-2 - x + 4/3) + 4/3}}, {x, 0, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (3 + 4/3) + 1/2, (-1 - x + 4/3) + 1/
2}, {((x + 4/3) + 4/3) - 1, (2 + 4/3) + 4/
3, ((-2 - x + 4/3) + 4/3) + 1}}, {x, 0, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (4 + 4/3) + 1/2, (-2 - x + 4/3) + 1/
2}, {(x + 4/3) + 4/3, (3 + 4/3) + 4/3, (-3 - x + 4/3) + 4/
3}}, {x, -1, 3, 1}]]},
{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 1/2, (4 + 4/3) + 1/2, (-2 - x + 4/3) + 1/
2}, {((x + 4/3) + 4/3) - 1, (3 + 4/3) + 4/
3, ((-3 - x + 4/3) + 4/3) + 1}}, {x, 0, 3, 1}]]},

(*bonding between the fifth Ga atom layer and the fifth N atom in [
0001] direction*)

{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 4/3, (-1 + 4/3) + 4/3, (1 - x + 4/3) + 4/
3}, {((x + 4/3) + 4/3) + 1/2, ((-1 + 4/3) + 4/3) + 1/
2, ((1 - x + 4/3) + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 4/3, (0 + 4/3) + 4/3, (0 - x + 4/3) + 4/
3}, {((x + 4/3) + 4/3) + 1/2, ((0 + 4/3) + 4/3) + 1/
2, ((0 - x + 4/3) + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 4/3, (1 + 4/3) + 4/3, (-1 - x + 4/3) + 4/
3}, {((x + 4/3) + 4/3) + 1/2, ((1 + 4/3) + 4/3) + 1/
2, ((-1 - x + 4/3) + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 4/3, (2 + 4/3) + 4/3, (-2 - x + 4/3) + 4/
3}, {((x + 4/3) + 4/3) + 1/2, ((2 + 4/3) + 4/3) + 1/
2, ((-2 - x + 4/3) + 4/3) + 1/2}}, {x, -1, 3, 1}]]},

{RGBColor[0, 1, 0],
Line[Table[{{(x + 4/3) + 4/3, (3 + 4/3) + 4/3, (-3 - x + 4/3) + 4/
3}, {((x + 4/3) + 4/3) + 1/2, ((3 + 4/3) + 4/3) + 1/
2, ((-3 - x + 4/3) + 4/3) + 1/2}}, {x, -1, 3, 1}]]}

}, ImageSize -> 600, Boxed -> False]
 
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top