Chapter 21 Ray D'Inverno Scalar Optics, congruence of null geodesics

portugal
Messages
1
Reaction score
0
First of all this is my first thread, so I apologize for any mistake.
Perhaps this is a stupid question, but i need some help in exercise 21.10 of D'Inverno, to write down geodesic equation for l^a, which is a vector tangent to a congruence of null geodesics and then by a rescaling of l^a:

l^a -> A l^a how we conclude that l^a;b l^b=0 ?
 
Physics news on Phys.org
Hello, try to use general geodesic equation and then simplify the connection term with the definition of covariant derivative. Read about affine parameters.

I'll try to post a solution attempt. ( Ray D'inverno is a nice book has introduction to general relativity aspects).
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top