MHB Check another visualise vector expression

  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Expression Vector
ognik
Messages
626
Reaction score
2
$ \left( \vec{r} - \vec{a} \right). \vec{r} = 0 $ Please check this:

Then, $ r^2 - a.r = 0 $, then $ \left( r - \frac{a}{2} \right)^2 - \left(\frac{a}{2}\right)^2 = 0 $, then
$ \left( x - \frac{a}{2}\right)^2 + \left(y - \frac{a}{2}\right)^2 + \left( z - \frac{a}{2}\right)^2 = \left(\frac{a}{2}\right)^2$

This is a circle radius $ \frac{a}{2} $, centred at $\left(\frac{a}{2} , \frac{a}{2} , \frac{a}{2} \right) $?
 
Physics news on Phys.org
ognik said:
$ \left( \vec{r} - \vec{a} \right). \vec{r} = 0 $ Please check this:

Then, $ r^2 - a.r = 0 $, then $ \left( r - \frac{a}{2} \right)^2 - \left(\frac{a}{2}\right)^2 = 0 $, then
$ \left( x - \frac{a}{2}\right)^2 + \left(y - \frac{a}{2}\right)^2 + \left( z - \frac{a}{2}\right)^2 = \left(\frac{a}{2}\right)^2$

This is a circle radius $ \frac{a}{2} $, centred at $\left(\frac{a}{2} , \frac{a}{2} , \frac{a}{2} \right) $?
Close. You have forgotten that a is a vector so [math]r^2 - \vec{a} \cdot \vec{r} = 0 \implies (x^2 + y^2 + z^2) - (a_x \cdot x + a_y \cdot y + a_z \cdot z) = 0[/math], which says
[math]\left ( x - \frac{a_x}{2} \right ) ^2 + \left ( y - \frac{a_y}{2} \right ) ^2 + \left ( z - \frac{a_z}{2} \right ) ^2 = \frac{a^2}{4}[/math]

This is a circle with center [math]\left ( \frac{a_x}{2},~ \frac{a_y}{2},~ \frac{a_z}{2} \right )[/math] and radius [math]| \vec{a} \cdot \vec{a}|/2[/math].

-Dan
 
Thanks, needed that reminder.

Radius $ \frac{ |a ⃗ ⋅a ⃗ |}{2} $ or $ \frac{\sqrt{ |a ⃗ ⋅a ⃗ |}}{2} $?
 
ognik said:
Thanks, needed that reminder.

Radius $ \frac{ |a ⃗ ⋅a ⃗ |}{2} $ or $ \frac{\sqrt{ |a ⃗ ⋅a ⃗ |}}{2} $?
[math]| \vec{a} \cdot \vec{b} | \equiv \sqrt{a_x b_x + a_y b_y +a_z b_z}[/math] so the "square root" of [math]\frac{a^2}{4}[/math] is [math] \frac{ | \vec{a} \cdot \vec{a} |}{2}[/math].

-Dan
 
Please stop calling $\vec{r}\cdot \vec{r}$ by $r^2$. The dot product is not a binary operation on vectors, it's a bilinear functional. It's important (except in the case where one is talking about an extension field) to distinguish between vectors and scalars.

Also, it's not a circle. Circles live in planes, the word to properly describe this shape is a *sphere*.

It has radius $\sqrt{\dfrac{\vec{a}\cdot\vec{a}}{4}} = \dfrac{\sqrt{\vec{a}\cdot\vec{a}}}{2} = \dfrac{\|\vec{a}\|}{2}$.
 
Deveno said:
Please stop calling $\vec{r}\cdot \vec{r}$ by $r^2$. The dot product is not a binary operation on vectors, it's a bilinear functional. It's important (except in the case where one is talking about an extension field) to distinguish between vectors and scalars.
You are right and with all due apologies! My Physics background is coming into play here.

-Dan
 
Thanks, all useful
 
Back
Top