MHB Check another visualise vector expression

  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Expression Vector
Click For Summary
The discussion revolves around the expression \( \left( \vec{r} - \vec{a} \right) \cdot \vec{r} = 0 \), leading to the conclusion that it describes a sphere rather than a circle. The correct interpretation involves recognizing that \( \vec{a} \) is a vector, which modifies the resulting equations to reflect a sphere's properties, specifically its center and radius. The radius is established as \( \frac{\|\vec{a}\|}{2} \), derived from the dot product. Participants emphasize the importance of distinguishing between vector and scalar operations in mathematical expressions.
ognik
Messages
626
Reaction score
2
$ \left( \vec{r} - \vec{a} \right). \vec{r} = 0 $ Please check this:

Then, $ r^2 - a.r = 0 $, then $ \left( r - \frac{a}{2} \right)^2 - \left(\frac{a}{2}\right)^2 = 0 $, then
$ \left( x - \frac{a}{2}\right)^2 + \left(y - \frac{a}{2}\right)^2 + \left( z - \frac{a}{2}\right)^2 = \left(\frac{a}{2}\right)^2$

This is a circle radius $ \frac{a}{2} $, centred at $\left(\frac{a}{2} , \frac{a}{2} , \frac{a}{2} \right) $?
 
Physics news on Phys.org
ognik said:
$ \left( \vec{r} - \vec{a} \right). \vec{r} = 0 $ Please check this:

Then, $ r^2 - a.r = 0 $, then $ \left( r - \frac{a}{2} \right)^2 - \left(\frac{a}{2}\right)^2 = 0 $, then
$ \left( x - \frac{a}{2}\right)^2 + \left(y - \frac{a}{2}\right)^2 + \left( z - \frac{a}{2}\right)^2 = \left(\frac{a}{2}\right)^2$

This is a circle radius $ \frac{a}{2} $, centred at $\left(\frac{a}{2} , \frac{a}{2} , \frac{a}{2} \right) $?
Close. You have forgotten that a is a vector so [math]r^2 - \vec{a} \cdot \vec{r} = 0 \implies (x^2 + y^2 + z^2) - (a_x \cdot x + a_y \cdot y + a_z \cdot z) = 0[/math], which says
[math]\left ( x - \frac{a_x}{2} \right ) ^2 + \left ( y - \frac{a_y}{2} \right ) ^2 + \left ( z - \frac{a_z}{2} \right ) ^2 = \frac{a^2}{4}[/math]

This is a circle with center [math]\left ( \frac{a_x}{2},~ \frac{a_y}{2},~ \frac{a_z}{2} \right )[/math] and radius [math]| \vec{a} \cdot \vec{a}|/2[/math].

-Dan
 
Thanks, needed that reminder.

Radius $ \frac{ |a ⃗ ⋅a ⃗ |}{2} $ or $ \frac{\sqrt{ |a ⃗ ⋅a ⃗ |}}{2} $?
 
ognik said:
Thanks, needed that reminder.

Radius $ \frac{ |a ⃗ ⋅a ⃗ |}{2} $ or $ \frac{\sqrt{ |a ⃗ ⋅a ⃗ |}}{2} $?
[math]| \vec{a} \cdot \vec{b} | \equiv \sqrt{a_x b_x + a_y b_y +a_z b_z}[/math] so the "square root" of [math]\frac{a^2}{4}[/math] is [math] \frac{ | \vec{a} \cdot \vec{a} |}{2}[/math].

-Dan
 
Please stop calling $\vec{r}\cdot \vec{r}$ by $r^2$. The dot product is not a binary operation on vectors, it's a bilinear functional. It's important (except in the case where one is talking about an extension field) to distinguish between vectors and scalars.

Also, it's not a circle. Circles live in planes, the word to properly describe this shape is a *sphere*.

It has radius $\sqrt{\dfrac{\vec{a}\cdot\vec{a}}{4}} = \dfrac{\sqrt{\vec{a}\cdot\vec{a}}}{2} = \dfrac{\|\vec{a}\|}{2}$.
 
Deveno said:
Please stop calling $\vec{r}\cdot \vec{r}$ by $r^2$. The dot product is not a binary operation on vectors, it's a bilinear functional. It's important (except in the case where one is talking about an extension field) to distinguish between vectors and scalars.
You are right and with all due apologies! My Physics background is coming into play here.

-Dan
 
Thanks, all useful
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K