Lanza52
- 63
- 0
[SOLVED] Takehome Test Check
Have a take home test that is due tomorrow at noon. Got 3 of the 4 done and I thought that it would be a good idea to have better mathematicians then myself check it for me. So, if anybody feels like doing the work;
1. Integration by Parts
\int\sin(log_{2}x)dx
u = \sin(log_{2}x)
du = \frac{\cos(log_{2}x)}{xlog2}dx
dv = dx, v = x
x\sin(log_{2}x)-\int\frac{x\cos(log_{2}x)}{xlog2}
x\sin(log_{2}x)-\frac{1}{log2}\int\cos(log_{2}x)dx
Then do it again.
u = \cos(log_{2}x)
du = \frac{-\sin(log_{2}x)}{xlog2}dx
dv = dx, v = x
x\cos(log_{2}x)+\int\frac{x\sin(log_{2}x)}{xlog2}
x\cos(log_{2}x)+\frac{1}{log2}\int\sin(log_{2}x)dx
Now put it all together.
x\sin(log_{2}x)-\frac{1}{log2}(x\cos(log_{2}x)+\frac{1}{log2}\int\sin(log_{2}x)dx)=\int\sin(log_{2}x)dx
x\sin(log_{2}x)-\frac{1}{log2}x\cos(log_{2}x)=\frac{log^{2}2+1}{log^{2}2}\int\sin(log_{2}x)dx
Answer:
\frac{log^{2}2(\sin(log_{2}x)-\frac{1}{log2}x\cos(log_{2}x))}{log^{2}2+1}=\int\sin(log_{2}x)dx
Have a take home test that is due tomorrow at noon. Got 3 of the 4 done and I thought that it would be a good idea to have better mathematicians then myself check it for me. So, if anybody feels like doing the work;
1. Integration by Parts
\int\sin(log_{2}x)dx
u = \sin(log_{2}x)
du = \frac{\cos(log_{2}x)}{xlog2}dx
dv = dx, v = x
x\sin(log_{2}x)-\int\frac{x\cos(log_{2}x)}{xlog2}
x\sin(log_{2}x)-\frac{1}{log2}\int\cos(log_{2}x)dx
Then do it again.
u = \cos(log_{2}x)
du = \frac{-\sin(log_{2}x)}{xlog2}dx
dv = dx, v = x
x\cos(log_{2}x)+\int\frac{x\sin(log_{2}x)}{xlog2}
x\cos(log_{2}x)+\frac{1}{log2}\int\sin(log_{2}x)dx
Now put it all together.
x\sin(log_{2}x)-\frac{1}{log2}(x\cos(log_{2}x)+\frac{1}{log2}\int\sin(log_{2}x)dx)=\int\sin(log_{2}x)dx
x\sin(log_{2}x)-\frac{1}{log2}x\cos(log_{2}x)=\frac{log^{2}2+1}{log^{2}2}\int\sin(log_{2}x)dx
Answer:
\frac{log^{2}2(\sin(log_{2}x)-\frac{1}{log2}x\cos(log_{2}x))}{log^{2}2+1}=\int\sin(log_{2}x)dx
Last edited: