MHB Checking Field Axioms for $G = F \times F$

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Axioms Field
Guest2
Messages
192
Reaction score
0
Problem: Let $F$ be a field and let $G = F \times F$. Define multiplication and addition on $G$ by setting $(a, b)+(c, d) = (a+c, b+d)$ and $(a, b) \cdot (c, d) = (ac, bd)$. Does this define a field structure on $$G$$?

I know field axioms but I'm unable to apply them to this problem. How do you check associativity for example?
 
Physics news on Phys.org
Guest said:
Problem: Let $F$ be a field and let $G = F \times F$. Define multiplication and addition on $G$ by setting $(a, b)+(c, d) = (a+c, b+d)$ and $(a, b) \cdot (c, d) = (ac, bd)$. Does this define a field structure on $$G$$?

I know field axioms but I'm unable to apply them to this problem. How do you check associativity for example?
To check associativity (for multiplication – use a similar process for associativity of addition), start like this: $$\bigl((a, b) \cdot (c, d)\bigr) \cdot(e,f) = (ac,bd)\cdot (e,f) = \bigl((ac)e,(bd)f\bigr).$$ Then do a similar calculation for $(a,b)\cdot \bigl((c,d) \cdot(e,f)\bigr)$, and use associativity of $F$ to conclude that the two results are the same.

You might do better to start the problem by asking what are the zero and identity elements of $F\times F$. Does each element of $F\times F$ have a negative, and does each nonzero element have an inverse?
 
Thank you.

Opalg said:
You might do better to start the problem by asking what are the zero and identity elements of $F\times F$. Does each element of $F\times F$ have a negative, and does each nonzero element have an inverse?
I can't find suitable identity elements. I tried (0, 0) for addition and (1, 0) for multiplication but these don't work!
 
Guest said:
Thank you.

I can't find suitable identity elements. I tried (0, 0) for addition and (1, 0) for multiplication but these don't work!

Try $(0,0)$ again for addition:

$(a,b) + (0,0) = (a+0,b+0) =?$

This might help for multiplication: suppose our identity (if it exists) is $(x,y)$.

Since we must have: $(a,b)(x,y) = (a,b)$, we obtain:

$ax = a$
$by = b$.

Note we can re-write these as:

$a(x - 1) = 0$
$b(y - 1) = 0$. Use the field properties for $F$, now.

As to your larger question, as to whether or not $F \times F$ with the operations indicated is a field, I suggest you consider whether or not it has any zero-divisors.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
14
Views
3K
Replies
9
Views
2K
Replies
5
Views
2K
Replies
3
Views
441
Replies
0
Views
403
Replies
9
Views
1K
Replies
16
Views
3K
Back
Top