Chemistry: pH after adding water

AI Thread Summary
To find the new concentration of OH- after diluting a potassium hydroxide solution with a pH of 11.65 to six times its original volume, the initial concentration of OH- must first be determined. The correct approach involves using the dilution formula c1v1 = c2v2, where the concentration decreases by a factor of six due to the dilution. The concentration of OH- can be calculated by taking the negative logarithm of the hydroxide ion concentration, which corresponds to the potassium hydroxide concentration. This method assumes ideal behavior and does not account for changes in temperature or pressure. Overall, the outlined approach effectively estimates the new concentration of OH- after dilution.
theCandyman
Messages
397
Reaction score
2
I am trying to find what the new concentration of OH^{-} in a solution of potassium hydroxide (pH = 11.65) is after diluting it with water to six times the original volume. It is at 298.15 K (25 degrees Celcius).

I have found the concentration of H_{3}O^{+} and I guessed that I just multiply the volume times six (divide the concentration by six) to find the new concentration, would this be a correct way to approach this problem?
 
Physics news on Phys.org
c_{1}v_{1}=c_{2}v_{2}

where c is concentration and v is volume. Find the initial [OH-], then use the above formula and the information given to find the new concentration.
 


Yes, your approach is correct. The concentration of OH^{-} in a solution of potassium hydroxide can be calculated by taking the negative logarithm of the hydroxide ion concentration, which is equal to the concentration of potassium hydroxide. So, if you dilute the solution by a factor of six, the concentration of OH^{-} will decrease by a factor of six as well. This means that the new concentration of OH^{-} can be calculated by dividing the original concentration by six. Keep in mind that this calculation assumes ideal behavior and does not take into account any potential changes in temperature or pressure. Overall, your approach is a good way to estimate the new concentration of OH^{-} in the solution after dilution with water.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top