Choose the best answer on Magnetic Fields and Moving charges

AI Thread Summary
The discussion revolves around two physics problems related to magnetic fields and moving charges. In the first problem, a wire carrying current in the positive y-direction experiences a magnetic force in the negative x-direction, leading to confusion about the magnetic field's direction, with one participant suggesting the negative z-direction as the answer. The second problem involves calculating the magnetic field ratio between two solenoids with differing characteristics, where the participant initially misapplies the formula for a toroid instead of a solenoid, resulting in incorrect calculations. Clarifications highlight that the radius does not affect the magnetic field in solenoids, and the correct approach involves using the formula B=(mu_naught*i)*(N/L). Overall, the discussion emphasizes the importance of correctly applying physics principles to solve problems accurately.
Physics Help!
Messages
12
Reaction score
0
1)A wire is carrying a current, i, in the positive y-direction. The wire is located in a uniform magnetic field, B, oriented in such a way that the magnetic force on the wire is maximized. The magnetic force acting on the wire, FB, is in the negative x direction. What is the direction of the magnetic field?
a) positive x-direction
b)negative x-direction
c)negative y-direction
d) positive z-direction
e) negative z-direction

I'm not really sure how the right hand rule 3 works for this but I just put my thumb in the direction of i and my fingers were curving downwards, so I pick e) but I'm not sure.

2. Two solenoids have the same length, but solenoid 1 has 15 times the number of turn, 1/9 the radius and 7 times the current of solednoid 2. Calculate the ratio of the magnetic field inside solenoid 1 to the magnetic field inside solenoid 2.
a) 105
b) 123
c) 144
d) 168
e) 197

I'm really not sure how to do this, I started by just plugging random numbers in for the equation B=(mu_naught*i)/(2pi*r)
I just plugged 2 for N, 3 for r, and 5 for i, and calculated the magnetic field for both and divided B of s2 by B of s1 and got 1.05E-3, I thought that that was right since I looked on the back of the book and the answer is in fact a) but I later noticed that I was using the equation for a toroid not a solenoid, since radius doesn't even affect the B of solenoids. I did the same thing with the equation B=(mu_naught*i)*(N/L) and (with L=15) got a number that wasn't on the choices, so I really don't know how to do this. Help please.
 
Physics news on Phys.org
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top