1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Circuit analysis -- Find active and reactive power in the branch...

  1. Jul 3, 2016 #1
    1. The problem statement, all variables and given/known data
    Given the circuit of sinusoidal current (attachment 1) with given data:
    [tex]\underline{E}=100V,\underline{E_1}=40V,\underline{Z}=(10+j10)\Omega,\omega=10^5rad/s,L=1mH,
    C=0.1uF.[/tex] Find [itex]\underline{I_L},\underline{U_{16}}[/itex], active and reactive power in the branch [itex]2-5[/itex].

    im1.PNG
    im2.PNG

    2. The attempt at a solution
    Using the loop current analysis we can find four loops (attachment 2) that correspond to linear system of four complex equations:

    [tex]C_1: (2\underline{Z}+jX_L)\underline{I_{C1}}-\underline{Z}\underline{I_{C2}}-\underline{Z}\underline{I_{C3}}+\underline{Z}\underline{I_{C4}}=\underline{E_1}-\underline{E}[/tex]
    [tex]C_2: 2\underline{Z}\underline{I_{C2}}-\underline{Z}\underline{I_{C1}}+\underline{Z}\underline{I_{C3}}+\underline{Z}\underline{I_{C4}}=\underline{E_1}+\underline{E}[/tex]
    [tex]C_3: 2\underline{Z}\underline{I_{C3}}-\underline{Z}\underline{I_{C1}}+\underline{Z}\underline{I_{C2}}-\underline{Z}\underline{I_{C4}}=\underline{E}[/tex]
    [tex]C_4: (2\underline{Z}-jX_C)\underline{I_{C4}}+2\underline{Z}\underline{I_{C1}}+\underline{Z}\underline{I_{C2}}-\underline{Z}\underline{I_{C3}}=\underline{E_1}-\underline{E}[/tex]

    This gives:
    [tex](20+j120)\underline{I_{C1}}-(10+j10)\underline{I_{C2}}-(10+j10)\underline{I_{C3}}+(20+j20)\underline{I_{C4}}=-60[/tex]

    [tex](-10-j10)\underline{I_{C1}}+(20+j20)\underline{I_{C2}}+(10+j10)\underline{I_{C3}}+(10+j10)\underline{I_{C4}}=140[/tex]

    [tex](-10-j10)\underline{I_{C1}}+(10+j10)\underline{I_{C2}}+(20+j20)\underline{I_{C3}}+(-10-j10)\underline{I_{C4}}=100[/tex]

    [tex](20+j20)\underline{I_{C1}}+(10+j10)\underline{I_{C2}}-(10+j10)\underline{I_{C3}}+(20-j80)\underline{I_{C4}}=-60[/tex]

    After reducing to 3x3 system:

    [tex](30+j230)\underline{I_{C1}}+(-10-j10)\underline{I_{C3}}+(50+j50)\underline{I_{C4}}=20[/tex]

    [tex](10+j110)\underline{I_{C1}}+(10+j10)\underline{I_{C3}}+(10+j10)\underline{I_{C4}}=20[/tex]

    [tex](40+j140)\underline{I_{C1}}+(-20-j20)\underline{I_{C3}}+(40-j60)\underline{I_{C4}}=-120[/tex]


    After reducing to 2x2 system:

    [tex](40+j340)\underline{I_{C1}}+(60+j60)\underline{I_{C4}}=60[/tex]

    [tex](-20-j320)\underline{I_{C1}}+(-60-j160)\underline{I_{C4}}=-160[/tex]

    [tex]
    \begin{bmatrix}
    40+j340 & 60+j60 \\
    -20-j320 & -60-j160 \\
    \end{bmatrix} \begin{bmatrix}
    \underline{I_{C1}} \\
    \underline{I_{C4}} \\
    \end{bmatrix}=\begin{bmatrix}
    60 \\
    -160 \\
    \end{bmatrix}\Rightarrow
    [/tex]

    [tex]\begin{bmatrix}
    40+j340 & 60+j60 & 60+j0 \\
    -20-j320 & -60-j160 & -160+j0 \\
    \end{bmatrix}=[/tex]

    [tex]\begin{bmatrix}
    40 & -340 & 60 & -60 & 60 & 0 \\
    340 & 40 & 60 & 60 & 0 & 60 \\
    -20 & 320 & -60 & 160 & -160 & 0 \\
    -320 & -20 & -160 & -60 & 0 & -160 \\
    \end{bmatrix}
    [/tex]

    Reduced row echelon form of this matrix is:
    [tex]\begin{bmatrix}
    1 & 0 & 0 & 0 & 1275/7481 & -240/7481 \\
    0 & 1 & 0 & 0 & 240/7481 & 1275/7481 \\
    0 & 0 & 1 & 0 & 303/7481 & 7688/7481\\
    0 & 0 & 0 & 1 & -7688/7481 & 303/7481 \\
    \end{bmatrix}[/tex]

    Now:

    [tex]\underline{I_{C1}}=\frac{1275}{7481}+j\frac{240}{7481},\underline{I_{C4}}=\frac{303}{7481}-j\frac{7688}{7481}\Rightarrow \underline{I_{C3}}=\frac{8209}{7481}-j\frac{15089}{7481},$$$$\underline{I_{C2}}=\frac{22565}{7481}-j\frac{14675}{7481}[/tex]

    [tex]\underline{I_L}=\underline{I_{C1}},\underline{U_{16}}=-jX_C \underline{I_{16}},\underline{I_{16}}=\underline{I_{C2}}\Rightarrow \underline{U_{16}}=-\frac{1467500}{7481}-j\frac{2256500}{7481}[/tex]

    Active and reactive power in the branch 2-5 can be found by complex apparent power, [itex]\underline{S_{25}}=\underline{U_{25}}\underline{{I_{52}}^{*}}[/itex]

    [tex]\underline{I_{52}}=\underline{I_{C1}}+\underline{I_{C2}}+\underline{I_{C3}}=\frac{32049}{7481}-j\frac{29524}{7481}[/tex]
    [tex]\underline{U_{25}}=\underline{E_1}-\underline{I_{52}}\underline{Z}=-\frac{316490}{7481}-j\frac{25250}{7481}\Rightarrow \underline{S_{25}}=-\frac{9397707010}{55965361}-j\frac{10153288010}{55965361}[/tex]

    [tex]\Rightarrow P=-\frac{9397707010}{55965361} W,Q=-\frac{10153288010}{55965361} var[/tex]

    Question: Could someone check if the results are correct?

    UPDATE:

    Question: What type of simulation in OrCAD Capture CIS Lite 16.6 can be used for checking these results?
     
    Last edited: Jul 3, 2016
  2. jcsd
  3. Jul 4, 2016 #2
    Near the end of all your analysis you have: I52 = IC1+IC2+IC3 but I think it should be I52 = IC1+IC2+IC4

    You sure used a cumbersome method of solving the system. Modern symbolic algebra software can solve the system in one go:

    CmplxPwr1.png
     
  4. Jul 4, 2016 #3
    You are correct about the current [itex]\underline{I_{52}}[/itex]. It should be [itex]\underline{I_{52}}=\underline{I_{C1}}+\underline{I_{C2}}+\underline{I_{C4}}[/itex].

    Do you know the easier method for solving the system of linear complex equations without any software?

    Also, do you know if it is possible to check the results in OrCAD?
     
  5. Jul 4, 2016 #4
    Why do you want to solve the system without any software? How about using a calculator that can do complex arithmetic? That would at least relieve some of the burden of the massive amount of number crunching.

    I don't use OrCad, so I can't help you there.
     
  6. Jul 5, 2016 #5

    gneill

    User Avatar

    Staff: Mentor

    @gruba: How did you arrive at 120 Ω for XL and 20 Ω for XC?

    I'm not familiar with OrCad, but it would be straightforward to set up a simulation using a Spice package such as LTSpice (which is free).
     
  7. Jul 5, 2016 #6

    gneill

    User Avatar

    Staff: Mentor

    The reason I ask is that with a source angular frequency of 105 rad/sec and part values for the inductor and capacitor being 1 mH and 0.1 μF, impedance values of 120 and 20 Ohms are not possible.

    You might also find that their actual impedance values have a particularly fortuitous relationship that can greatly simplify your circuit analysis approach... :wink:
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Circuit analysis -- Find active and reactive power in the branch...
  1. Reactive power (Replies: 5)

Loading...