- #1
gruba
- 206
- 1
Homework Statement
Given the circuit of sinusoidal current (attachment 1) with given data:
[tex]\underline{E}=100V,\underline{E_1}=40V,\underline{Z}=(10+j10)\Omega,\omega=10^5rad/s,L=1mH,
C=0.1uF.[/tex] Find [itex]\underline{I_L},\underline{U_{16}}[/itex], active and reactive power in the branch [itex]2-5[/itex].
2. The attempt at a solution
Using the loop current analysis we can find four loops (attachment 2) that correspond to linear system of four complex equations:
[tex]C_1: (2\underline{Z}+jX_L)\underline{I_{C1}}-\underline{Z}\underline{I_{C2}}-\underline{Z}\underline{I_{C3}}+\underline{Z}\underline{I_{C4}}=\underline{E_1}-\underline{E}[/tex]
[tex]C_2: 2\underline{Z}\underline{I_{C2}}-\underline{Z}\underline{I_{C1}}+\underline{Z}\underline{I_{C3}}+\underline{Z}\underline{I_{C4}}=\underline{E_1}+\underline{E}[/tex]
[tex]C_3: 2\underline{Z}\underline{I_{C3}}-\underline{Z}\underline{I_{C1}}+\underline{Z}\underline{I_{C2}}-\underline{Z}\underline{I_{C4}}=\underline{E}[/tex]
[tex]C_4: (2\underline{Z}-jX_C)\underline{I_{C4}}+2\underline{Z}\underline{I_{C1}}+\underline{Z}\underline{I_{C2}}-\underline{Z}\underline{I_{C3}}=\underline{E_1}-\underline{E}[/tex]
This gives:
[tex](20+j120)\underline{I_{C1}}-(10+j10)\underline{I_{C2}}-(10+j10)\underline{I_{C3}}+(20+j20)\underline{I_{C4}}=-60[/tex]
[tex](-10-j10)\underline{I_{C1}}+(20+j20)\underline{I_{C2}}+(10+j10)\underline{I_{C3}}+(10+j10)\underline{I_{C4}}=140[/tex]
[tex](-10-j10)\underline{I_{C1}}+(10+j10)\underline{I_{C2}}+(20+j20)\underline{I_{C3}}+(-10-j10)\underline{I_{C4}}=100[/tex]
[tex](20+j20)\underline{I_{C1}}+(10+j10)\underline{I_{C2}}-(10+j10)\underline{I_{C3}}+(20-j80)\underline{I_{C4}}=-60[/tex]
After reducing to 3x3 system:
[tex](30+j230)\underline{I_{C1}}+(-10-j10)\underline{I_{C3}}+(50+j50)\underline{I_{C4}}=20[/tex]
[tex](10+j110)\underline{I_{C1}}+(10+j10)\underline{I_{C3}}+(10+j10)\underline{I_{C4}}=20[/tex]
[tex](40+j140)\underline{I_{C1}}+(-20-j20)\underline{I_{C3}}+(40-j60)\underline{I_{C4}}=-120[/tex]After reducing to 2x2 system:
[tex](40+j340)\underline{I_{C1}}+(60+j60)\underline{I_{C4}}=60[/tex]
[tex](-20-j320)\underline{I_{C1}}+(-60-j160)\underline{I_{C4}}=-160[/tex]
[tex]
\begin{bmatrix}
40+j340 & 60+j60 \\
-20-j320 & -60-j160 \\
\end{bmatrix} \begin{bmatrix}
\underline{I_{C1}} \\
\underline{I_{C4}} \\
\end{bmatrix}=\begin{bmatrix}
60 \\
-160 \\
\end{bmatrix}\Rightarrow
[/tex]
[tex]\begin{bmatrix}
40+j340 & 60+j60 & 60+j0 \\
-20-j320 & -60-j160 & -160+j0 \\
\end{bmatrix}=[/tex]
[tex]\begin{bmatrix}
40 & -340 & 60 & -60 & 60 & 0 \\
340 & 40 & 60 & 60 & 0 & 60 \\
-20 & 320 & -60 & 160 & -160 & 0 \\
-320 & -20 & -160 & -60 & 0 & -160 \\
\end{bmatrix}
[/tex]
Reduced row echelon form of this matrix is:
[tex]\begin{bmatrix}
1 & 0 & 0 & 0 & 1275/7481 & -240/7481 \\
0 & 1 & 0 & 0 & 240/7481 & 1275/7481 \\
0 & 0 & 1 & 0 & 303/7481 & 7688/7481\\
0 & 0 & 0 & 1 & -7688/7481 & 303/7481 \\
\end{bmatrix}[/tex]
Now:
[tex]\underline{I_{C1}}=\frac{1275}{7481}+j\frac{240}{7481},\underline{I_{C4}}=\frac{303}{7481}-j\frac{7688}{7481}\Rightarrow \underline{I_{C3}}=\frac{8209}{7481}-j\frac{15089}{7481},$$$$\underline{I_{C2}}=\frac{22565}{7481}-j\frac{14675}{7481}[/tex]
[tex]\underline{I_L}=\underline{I_{C1}},\underline{U_{16}}=-jX_C \underline{I_{16}},\underline{I_{16}}=\underline{I_{C2}}\Rightarrow \underline{U_{16}}=-\frac{1467500}{7481}-j\frac{2256500}{7481}[/tex]
Active and reactive power in the branch 2-5 can be found by complex apparent power, [itex]\underline{S_{25}}=\underline{U_{25}}\underline{{I_{52}}^{*}}[/itex]
[tex]\underline{I_{52}}=\underline{I_{C1}}+\underline{I_{C2}}+\underline{I_{C3}}=\frac{32049}{7481}-j\frac{29524}{7481}[/tex]
[tex]\underline{U_{25}}=\underline{E_1}-\underline{I_{52}}\underline{Z}=-\frac{316490}{7481}-j\frac{25250}{7481}\Rightarrow \underline{S_{25}}=-\frac{9397707010}{55965361}-j\frac{10153288010}{55965361}[/tex]
[tex]\Rightarrow P=-\frac{9397707010}{55965361} W,Q=-\frac{10153288010}{55965361} var[/tex]
Question: Could someone check if the results are correct?
UPDATE:
Question: What type of simulation in OrCAD Capture CIS Lite 16.6 can be used for checking these results?
Last edited: