Circular motion -- Car on a circular track

AI Thread Summary
A car accelerates from an initial speed of 20 m/s on a circular track with a radius of 40 m, increasing its speed at 0.9 m/s². To determine the time needed to travel 35 m, an integral approach is suggested, but confusion arises regarding the integration method due to the non-constant acceleration. Some participants discuss using substitutions like tan or sinh to simplify the integral, while others propose a quadratic equation approach, which is deemed invalid due to the variable acceleration. Ultimately, the correct solution involves careful integration, leading to a calculated time of approximately 1.686 seconds.
Nikstykal
Messages
29
Reaction score
1

Homework Statement


A car has an initial speed v0= 20m/s. It increases its speed along the circular track at s=0, at=(0.9s) m/(s2), where s is in meters. Determine the time needed for the car to travel 35m. The radius of curvature of the track is 40m.

Homework Equations


an = v^2/p
a = dv/dt

The Attempt at a Solution


I really don't know how to approach the problem. I know that I want to define an integral that evaluates a change in s on one side with a change in t on the other.

I started by setting a = dv/dt = dv/ds * ds/dt = v * dv/ds so a * ds = v*dv. By doing this integral from 0 to 35m I found the final velocity to be 26.5 m/s. I do not know where to proceed from here.

Or can i solve that integral without inputting a value for s to get vf = sqrt ( 0.9s^2+400 ) ? Then using that I can do v = ds/dt so dt = (1/v) ds --> t = Integral [ 1/sqrt(0.9s^2+400) ds?
 
Physics news on Phys.org
Strange question... if I understand it correctly the curvature is irrelevant. Is this perhaps just one part of a longer question?
I get a larger value for the final speed. Please post your working.
The approach you describe at the end looks right, but make it easy on yourself by using symbols for the acceleration function etc., not plugging in numbers: ##\int (ks^2+v_0^2)^{-\frac 12}.ds##.
Can you think of a substitution for s in the integral that will get rid of the square root?
 
haruspex said:
Strange question... if I understand it correctly the curvature is irrelevant. Is this perhaps just one part of a longer question?
I get a larger value for the final speed. Please post your working.
The approach you describe at the end looks right, but make it easy on yourself by using symbols for the acceleration function etc., not plugging in numbers: ##\int (ks^2+v_0^2)^{-\frac 12}.ds##.
Can you think of a substitution for s in the integral that will get rid of the square root?

It isn't part of a longer problem, might just be irrelevant information. I know you can integrate that using a trig sub with tan(theta) but it looks a little messy. I was hoping there was another approach.
 
Nikstykal said:
It isn't part of a longer problem, might just be irrelevant information. I know you can integrate that using a trig sub with tan(theta) but it looks a little messy. I was hoping there was another approach.
Tan or sinh. If the integral is correct (and I think it is) then there will not be an easier way.
 
haruspex said:
Tan or sinh. If the integral is correct (and I think it is) then there will not be an easier way.
can you explain the sinh substitution method.
 
Being lazy, I'd write it as a quadratic equation: (a/2 X t^2) + 20t - 35 =0. Solve that and choose the value of t that solves the problem.
 
OldYat47 said:
Being lazy, I'd write it as a quadratic equation: (a/2 X t^2) + 20t - 35 =0. Solve that and choose the value of t that solves the problem.
I thought the quadratic form could only be used when you are assuming constant acceleration, where in this case its not, its a(s). In fact, when I use a(s) = a(35) and solve for the values of t, neither answers are correct.
 
Nikstykal said:
can you explain the sinh substitution method.
Just as tan2+1=sec2, sinh2+1=cosh2.

Nikstykal said:
I thought the quadratic form could only be used when you are assuming constant acceleration,
Quite so.
 
The quadratic equation should be 0.45t^2 + 20T -35 = 0. Solve using the quadratic formula. I get 1.686 seconds.

By habit I use the simplest method I can. I've been doing this since before pocket calculators, so the simpler the better.
 
  • #10
OldYat47 said:
The quadratic equation should be 0.45t^2 + 20T -35 = 0. Solve using the quadratic formula. I get 1.686 seconds.

By habit I use the simplest method I can. I've been doing this since before pocket calculators, so the simpler the better.
I find a better strategy is to use the simplest valid method. As Nikstykal pointed out in post #7, your quadratic method is invalid here. The acceleration is not constant.
 
  • #11
Being lazy I read the acceleration as 0.9 m/s^2. Oops!
 
Back
Top