Clarifying Robertson-Walker Metric Math Objects

  • Thread starter Thread starter space-time
  • Start date Start date
  • Tags Tags
    Metric
space-time
Messages
218
Reaction score
4
Here is the Robertson Walker metric:

ds2= (cdt)2 - R2(t)[dr2/(1- kr2) + r2(dθ2 + sin2(θ)dΦ2)]

This metric is seen and discussed in this link: http://burro.cwru.edu/Academics/Astr328/Notes/Metrics/metrics.html

Now I am in the process of deriving the general relativistic mathematical objects for this metric such as the Christoffel symbols, Ricci tensor, etc... However, one thing is bothering me.

As you can see both in the link and at the top of this post, they did not omit the c term using the c=1 convention in the first term of the metric. However, that scale factor R(t) only has t in it and not ct.

This bothers me because I am on the fence about whether I should treat R(t) as a constant when deriving my Christoffel symbols or if I should treat it as a function of x0 and differentiate accordingly when deriving my Christoffel symbols. Note that x0 = ct , x1= r , x2=θ , x3 = Φ

It is possible that they may be assuming that c=1 inside of the R(t) function and that is why they omit the c there, or it could just simply be that R(t) is not a function of x0 and I should just treat it as a constant when differentiating terms of my metric tensors.

Which option is the correct choice?

For those who need clarification on what I am asking, here is a numerical example:

The metric tensor element g11 = -R2(t)/(1- kr2)

While deriving the Christoffel symbols, one of the derivatives I will have to take is:
∂g11 /∂x0

If I treat the term -R2(t) as a function of x0, then the above derivative would evaluate to be:

-2R(t)R'(t)/(1- kr2) where R'(t) is simply the derivative of R(t) with respect to t.

However, if I treat the term -R2(t) as a constant, then the derivative is 0.

Which case is the correct case?
 
Physics news on Phys.org
I think your difficulty is in ##x^0=ct##. Just drop the ##c## there. ##R(t)## is a function of ##x^0##. If not you get no curvature as you say.
 
  • Like
Likes space-time
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy

Similar threads

Back
Top