Closure under * for subset H of commutative elements in set S

bennyska
Messages
110
Reaction score
0

Homework Statement


suppose that * is an associative binary operation on a set S. Let H = {a elementof S | a*x = x*a forall x elementof S}. Show that H is closed under *.


Homework Equations





The Attempt at a Solution


i don't really know where to begin. I know i need to show forall a,b elementof H, a*b elementof H. i know * is associative, and H is the subset of all commutive elements of S. (the book says, "we think of H as consisting of all elements of S that commute with every element is S." same thing?) where do i go from here? what does * being associative have to do with commutive elements?
 
Physics news on Phys.org
Let a, b \in H. To show closure, you want to prove that a*b \in H. In other words, you want to show that for all x \in S, (a*b)*x = x*(a*b). Make sense?
 
so could i say:
since * is associative, then for all a, b, x in S, (a*b)*x = a*(b*x), and since H is the set of all commutative elements, then (a*b)*x = a*(b*x) = x*(b*a) = x*(a*b), and H is closed under S. does that make sense, or did i just reiterate what you said? ( i guess i want to reiterate what you said with more detail.)
 
Yeah, essentially, but you need to pay more attention to the details. The statement only holds for a, b in H, not in S generally, but it needs to hold for all x in S. Also, just do one step at a time so it's clear that each step is justified. When you wrote a*(b*x)=x*(b*a), how do you know x and a can switch places like that? You are using neither commutativity nor associativity alone, so it's not immediately apparent to the reader that the step is correct.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top