Finding Coefficients of Series Using Integrals and Known Sums

abc617
Messages
11
Reaction score
0
[PLAIN]http://img243.imageshack.us/img243/156/55139700.png

Knowns
Well I know that
\sum \frac{1}{1-x} = 1+x^{2}+x^{3}...

I know the integral is

[PLAIN]http://www4a.wolframalpha.com/Calculate/MSP/MSP32919a6dgiib73geda500000hd72bah4i062h1b?MSPStoreType=image/gif&s=36&w=241&h=38

I've first started with the known sum, then i replaced [x] with [PLAIN]http://www4c.wolframalpha.com/Calculate/MSP/MSP15219a6e2bf832h2gb6000039if18068de4ia05?MSPStoreType=image/gif&s=55&w=20&h=39

\sum \frac{1}{1-(x/2)^2} = 1-(x^2/2)^2-(x^2/2)^3..


Then I tried to integrate the new sum [too long and latek is messing up for me] to get arctan. Then I multiplied it by 16.

I feel that I'm messing up somewhere, I just don't know where.
 
Last edited by a moderator:
Physics news on Phys.org
For the integral: In the denominator factor the 4, that is

\frac{16}{4((\frac{x}{2})^2+1)}

and use the hint.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top