Look at things this way : given an ##n\times n## matrix ##A##, with real coefficients for exemple, its determinant is the determinant of the column vectors in the canonical basis ##{\cal B}## of ##M_{n,1}(\mathbb{R})##, which you could write ## \det A = \det_{\cal B} (C_1,...,C_n)##.
With the multilinearity and alternating property of the determinant of a family of ##n## vectors in a vector space of dimension ##n##, you can write :
##\det A = \sum_{i = 1}^n C_{i,j} \det_{\cal B} (C_1,...,C_{j-1}, e_i, C_{j+1},..,C_n)##.
And the determinant in the sum is what you call a cofactor with respect to position ##(i,j)##. Now let's evaluate this cofactor :
##\begin{align*}
\det_{\cal B} (C_1,...,C_{j-1}, e_i, C_{j+1},..,C_n) =& (-1)^{n-j} \det_{\cal B} (C_1,...,C_{j-1}, C_{j+1},..,C_n,e_i) \\
=& (-1)^{n -j} \det (B_{i,j}) \quad\quad \quad (*) \\
= & (-1)^{n -j} (-1)^{n -i} \Delta_{i,j} \\
=& (-1)^{i+j}\Delta_{i,j}
\end{align*}
##
##(*)## : ##B_{i,j}## is the transposed matrix of the matrix filled with columns ## (C_1,...,C_{j-1}, C_{j+1},..,C_n,e_i) ##. You have that the last row of ##B_{i,j}## contains only one entry that is 1 and the others are zeros.
At this point ##\Delta_{ij}## is the determinant of ##B_{ij}## modulo ##(n-i)## successive column transpositions, so that the n-th column is zero except the last term that is 1. So you get the formula for columnwise expansion of the determinant.
______
For the inverse, you can notice that if ##A## is invertible, the family ##{\cal C} = (C_1,...,C_n)## forms a basis of ##M_{n,1}(\mathbb{R})##. Given a vector ##U = {}^T (u_1,..,u_n)## given in canonical basis ##{\cal B}##, you have
## \begin{align*}
\det_{\cal C} (C_1,...,C_{j-1},U,C_{j+1},...,C_n) =& \det_{\cal C}({\cal B}) \det_{\cal B}(C_1,...,C_{j-1},U,C_{j+1},...,C_n) \\
= & \frac{1}{\det_{\cal B}({\cal C})} \sum_{i=1}^n u_i (\text{cof}(A))_{i,j} \\
= & \frac{1}{\det (A) } ({}^T \text{cof}(A) U)_j \\
\end{align*}##Replace ##U ## with ##C_i={}^T(a_{1i},...,a_{ni})## : ## \frac{1}{\det (A) } ({}^T \text{cof}(A) C_i)_j = \delta_{ij}##
and then ## \frac{1}{\det (A) } {}^T \text{cof}(A) A = I_n##