rubi
Science Advisor
- 847
- 348
I think vanhees is right. The projection postulate is not needed here. If you use the SG apparatus to spatially separate the different spin particles, you end up with a mixed state ##\rho_{SG} = \left|x_1,\uparrow\right>\left<x_1,\uparrow\right|+\left|x_2,\downarrow\right>\left<x_2,\downarrow\right|## (the environment has already been traced out and the small off-diagonal terms have been neglected). Assume you want to do scattering experiments with the spin up particles by a potential ##V(x)##, which is supported in a bounded region ##R##. You would arrange the SG apparatus in such a way that the spin down particles end up in a different region (##x_2\notin R##), while ##x_1\in R##. Now you would choose a basis for ##L^2(R)## and calculate the partial trace ##\rho_R=\mathrm{Tr}_R\rho_{SG}=\left|x_1,\uparrow\right>\left<x_1,\uparrow\right|##. If you only want to measure observables in ##R##, the states ##\rho_{SG}## and ##\rho_R## are indistinguishable for you. The whole system is still in a mixed state (or even in a pure state, if you include the environmental degrees of freedom) and no collapse has ever happened, but you have isolated a state ##\rho_R## that is indistinguishable from a hypothetically collapsed, pure state ##\left|x_1,\uparrow\right>## for experimenters who only measure in the region ##R##.