Column Space and Pivot Columns in Reduced Matrices

horefaen
Messages
7
Reaction score
0
To find the column space of a matrix, you reduce the matrix and those columns that contains leading variables(pivot columns), refers to the columns in the original matrix who span the columnspace of the matrix. But does the pivotcolumns in the reduced matrix also span the column space of the original matrix?
 
Physics news on Phys.org
No. Consider the following matrix:
\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}

The row echelon form of this matrix is
\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}

Is Span\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}\}= Span\{\begin{pmatrix} 1 \\ 2 \end{pmatrix}\}?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top