Combination of uncertainties/errors when dealing with equations

  • Thread starter Thread starter Supra
  • Start date Start date
  • Tags Tags
    Combination
Supra
Messages
5
Reaction score
0
[SOLVED] Combination of uncertainties/errors when dealing with equations

Greetings; I wasn’t sure exactly which section to place this so please move it if necessary.

My problem is as follows:

I have worked out an impedance for a coaxial cable, using the following formula: Z = (L/C)^1/2. Here, L is the inductance and C is the capacity per unit length. L is given by L = (μ/2π)ln(b/a). C is given by C = 2πε/[ln(b/a)]. Both b and a are distances. All other values are constants with their usual meaning.

I have no trouble in working through these equations and combining them to find a Z value. What I’m struggling with is the ‘associated errors’ of these things. As this result is required for a lab report it is important that I do quote the overall uncertainty of my final result.

I understand that both a and b are measured values and this means I do have an error associated with them (given by the resolution of the measuring instrument). I also understand how to combine the errors of b and a when the 2 values ‘interact’ e.g. the error combination for (b/a) can be found using the standard error formula (ΔZ/Z)^2 = (ΔA/A)^2 + (ΔB/B)^2 (I can also do it for when the natural log of the combined values is taken). However, what I find difficult is the consideration of the constant values in the equation. If I just ignore these constants and take the errors for the combinations as explained above, I find the final error outcome is many times greater in magnitude than the final answer, so I am positive I do need to reconsider this. How do I consider the constants and their relationship to the errors, as I can’t quote an error for something like π yet it does effect the equation?

Any help would be much appreciated. All I am interested in is how to consider the constants in the equation with regards to errors (as I’ve explained I already know about standard error combinations when both values have errors). Obviously it is down to me to go through the actual numbers once I know what to do.

Many thanks for any help,

Supra.
 
Physics news on Phys.org
you need to differentiate the equation with respect to both a and b and comb ine them using propagation of uncertainties.
Here is a link: http://www.rit.edu/~uphysics/uncertainties/Uncertaintiespart2.html
 
Last edited by a moderator:
Ok well I've ran it through and found my impedance of 83Ω has an error of +- 0.168. Now that sounds a lot more reasonable to me, and I have to do another 4 impedances so I should be able to confirm they are realistic values.

Many thanks for the help Dr Transport, and for a very useful link <adds to bookmarks>.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top