Combining Multiple Rules for Error Propagation

AI Thread Summary
To calculate the kinetic energy of an object with mass m=2.3±0.1kg and speed v=1.25±0.03m/s, the formula K=1/2mv² is used, resulting in K=1.8 J. The uncertainty in kinetic energy requires applying the product rule for error propagation, which states that for a product z=xy, the relative uncertainty is δz/z=δx/x+δy/y. For uncorrelated variables, uncertainties should be combined in quadrature, meaning δz²=δx²+δy². The discussion emphasizes the importance of correctly applying these rules to estimate the uncertainty in kinetic energy accurately. Understanding these error propagation methods is crucial for precise calculations in physics.
ELLE_AW
Messages
16
Reaction score
0

Homework Statement


  1. An object of mass m=2.3±0.1kg moves at a speed of v=1.25±0.03m/s. Calculate the kinetic energy (K=1/2mv2) of the object and estimate the uncertainty δK?

Homework Equations


- Addition error propagation--> z = x + y and the Limit error--> δz = δx + δy

- Exponent error propagation --> z = xn and the Limit Error --> δz = nxn-1(δx)

- K = 1/2mv2

The Attempt at a Solution



This is what I attempted, but I really don't think it's right. I basically just included the exponent error propagation, but how does the multiplication of mv2 get incorporated?

- K = ½ mv2 = ½ (2.3kg)(1.25m/s)2 = 1.7969 kg m2 s-2 = 1.8 J

- Uncertainty of K = (m)2v1(δv) = (2.3)(2)(1.25)(0.03) = 0.1725 = 0.17
How do I combine these two rules when calculating the uncertainty of the kinetic energy?

 
Physics news on Phys.org
ELLE_AW said:
Relevant equations
You seem to be missing the product rule:
If z=xy then δz/z=δx/x+δy/y
 
ELLE_AW said:
Addition error propagation--> z = x + y and the Limit error--> δz = δx + δy
This is error propagation for correlated variables x and y. If your variables are uncorrelated, they should be added in quadrature, i.e.,
$$
\delta z^2 = \delta x^2 + \delta y^2.
$$
The same is true for uncorrelated relative errors in the case of a product.
 
Got it, thank you!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top