- #1

- 3,766

- 296

[tex] U(\Lambda)^{-1} M^{\mu \nu} U(\Lambda) = \Lambda^{\mu}_{\,\,\rho} \Lambda^{\nu}_{\, \, \sigma} M^{\rho \sigma} [/tex]

He says that writing [itex] \Lambda = 1 + \delta \omega [/itex], one obtains the usual commutation relation of the [itex] M_{\mu \nu} [/itex]:

[tex] [ M^{\mu \nu},M^{\rho \sigma} ] = i ( g^{\mu \rho} M^{\nu \sigma} - (\mu \leftrightarrow \nu}) - (\rho \leftrightarrow \sigma) [/tex]

I get, starting from the first equation

[tex] [ M^{\mu \nu},M^{\rho \sigma} ] \delta \omega_{\rho \sigma} = i (\eta^\mu_\rho \delta \omega^\nu_\sigma M^{\rho \sigma} + \eta^\nu_\sigma \delta \omega^\mu_\rho M^{\rho \sigma} ) [/tex]

I don't see how to extract the commutator because the omega on the right side contain one of the indices that is not summed over. Its' not clear to me how to proceed. Any suggestion?