Commuting metric past Dirac spinors?

auditor
Messages
8
Reaction score
0
I'm wondering how in Peskin & Schroeder they go from

i\mathcal{M} = {\overline{v}^s^'} (p^{'}) (-ie\gamma^\mu)u^s(p) \left( \frac{-ig_{\mu\nu}}{q^2} \right) \overline{u}^r (k) (-ie\gamma^\nu) v^{r^{'}} (k)

at the bottom of page 131 to (5.1) at the top of 132 which reads

i\mathcal{M} = \frac{ie^2}{q^2}(\overline{v}(p^{'}) \gamma^\mu u(p) (\overline{u}(k)\gamma_\mu v(k^{'}))

Most of the stuff is ok, in particular dropping the spin superscripts. But how does the metric commute with

\overline{u}^r (k)

? I kind'a remember that the spinors are elements of the SU(2) group and that this might be related to my question. It seems as though the commutator is 0. But if I write out the metric and the Dirac spinor on matrix and vector form respectively I get a matrix product of the form

(4 x 4)\cdot (1 x 4)

which is undefined. I suspect by doing this I'm mixing apples and oranges, thus my reference to the SU(2) structure. I really don't have time to dwell in group theoretical details right now, although I'm aware that this is the only way to really get QFT. Could anyone please advice? My intuition is that, yes; they do commute, but I want to be sure.

Thanks!
 
Physics news on Phys.org
You're thinking too hard. :smile:

g_{\mu\nu} is not the metric, it is (for each \mu and \nu) a component of the metric, i.e., a number, and, as such, commutes with everything!
 
Wow - that's true. :) Thanks a lot George, really appreciate it!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top