Complex Analysis: What is f(1-4i)?

Kiefer
Messages
6
Reaction score
0
Suppose f is an entire function and, for every z in the complex plane, |f'(z) - (2 + 3i)| ≥ 0.00007.
Suppose also that f(0) = 10 + 3i and f'(7+ 9i) = 1 + i. What is f(1 - 4i)?
 
Physics news on Phys.org
Kiefer said:
Suppose f is an entire function and, for every z in the complex plane, |f'(z) - (2 + 3i)| ≥ 0.00007.
Suppose also that f(0) = 10 + 3i and f'(7+ 9i) = 1 + i. What is f(1 - 4i)?
What have you tried?

Where are you stuck?
 
Not really sure where to start, any help pointing me in the right direction would be great. I've done a somewhat similar problem where I proved that the function was constant, so that f equals the same value at all points, but that is not the case with this function.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top