Complex exponentials - homework

Poetria
Messages
267
Reaction score
42
Thread moved from the technical Math forums, so no Homework Template is shown
Could you give me a hint how to attack this problem?

Find a complex number z = a+i*b such that f(t)=Re e^(z*t) where f(t)=cos(2*pi*t)

I have begun as follows:

e^((a+i*b)*t)=e^(a*t)*(cos(b)+i*sin(b))

Re e^(z*t)= e^(a*t)*cos(b)

What to do now?
 
Physics news on Phys.org
Hi, ##t## is real? If is yes so you must find ##a,b## from ##e^{at}\cos{b}=cos(2\pi t)## ...
 
  • Like
Likes Poetria
Ssnow said:
Hi, ##t## is real? If is yes so you must find ##a,b## from ##e^{at}\cos{b}=cos(2\pi t)## ...

Yes, t is a real variable.I know I must but how? Thank you very much. :)
 
another hint: ## e^{at}cos{(b)}=e^{0t}cos{(2\pi t)}##, you can read now ##a=...## and ##b=...##
 
  • Like
Likes berkeman and Poetria
Ssnow said:
another hint: ## e^{at}cos{(b)}=e^{0t}cos{(2\pi t)}##, you can read now ##a=...## and ##b=...##

Ok, I got it. :) Great. Thank you very much. :)
 
  • Like
Likes Ssnow
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top