Complex Impedance of a voltage source and 2 resistors

AI Thread Summary
A real voltage source can be modeled as an ideal voltage source in series with its internal resistance and another resistor, both having complex impedance. The total impedance is calculated by summing the individual impedances, leading to a formula for the current based on the voltage and total impedance. The non-dc power dissipated in the second resistor is determined by the real part of its impedance, and the correct power formula is P=i²R_L, where R_L is the real part of the impedance. Maximum power dissipation occurs when the source impedance is the complex conjugate of the load impedance. Proper terminology is crucial, as "resistance" should not be used to describe complex impedance.
Potatochip911
Messages
317
Reaction score
3

Homework Statement


A real voltage source can be expressed as an ideal voltage source that is in series with a resistor that represents the inner resistance of the voltage source. This voltage source is a EMF and it is also in series with another resistor. Suppose both the EMF resistor ##R_\varepsilon## and the second resistor ##R_2## have complex impedance. Determine a) The current, b) the non-dc power that is dissipated in the second resistor and c) The requirements to achieve maximum dissipated power in the second resistor.https://physicsforums-bernhardtmediall.netdna-ssl.com/data/attachments/80/80085-d91a852075e6af6d2347539788417783.jpg

Homework Equations


##\tilde{v}=\tilde{i}z##
##z_ts=z_1+z_2+\cdots##
##z=|z|e^{j\phi}##

The Attempt at a Solution



For part a) the total impedance will be given by ##z_t=z_1+z_2=(R_\varepsilon +ja)+(R_2+jb)=(R_\varepsilon+R_2)+j(a+b)## so ##|z|=\sqrt{(R_\varepsilon+R_2)^2+(a+b)^2}## and ##\phi=tan^{-1}(\frac{a+b}{R_\varepsilon+R_2})## then from ##\tilde{i}=\frac{\tilde{v}}{z}##

$$\tilde{i}=\frac{ve^{-j\phi}}{\sqrt{(R_\varepsilon+R_2)^2+(a+b)^2}} \\
i=\frac{v\cos(\phi)}{\sqrt{(R_\varepsilon+R_2)^2+(a+b)^2}}
$$

now for b) would the non-dc power dissipated in the second resistor be ##P=i\Im{(R_2)}=ibj##?
 

Attachments

  • picture.png
    picture.png
    1.2 KB · Views: 554
Last edited by a moderator:
Physics news on Phys.org
Potatochip911 said:

Homework Statement


A real voltage source can be expressed as an ideal voltage source that is in series with a resistor that represents the inner resistance of the voltage source. This voltage source is a EMF and it is also in series with another resistor. Suppose both the EMF resistor ##R_\varepsilon## and the second resistor ##R_2## have complex impedance. Determine a) The current, b) the non-dc power that is dissipated in the second resistor and c) The requirements to achieve maximum dissipated power in the second resistor.https://physicsforums-bernhardtmediall.netdna-ssl.com/data/attachments/80/80085-d91a852075e6af6d2347539788417783.jpg

Homework Equations


##\tilde{v}=\tilde{i}z##
##z_ts=z_1+z_2+\cdots##
##z=|z|e^{j\phi}##

The Attempt at a Solution



For part a) the total impedance will be given by ##z_t=z_1+z_2=(R_\varepsilon +ja)+(R_2+jb)=(R_\varepsilon+R_2)+j(a+b)## so ##|z|=\sqrt{(R_\varepsilon+R_2)^2+(a+b)^2}## and ##\phi=tan^{-1}(\frac{a+b}{R_\varepsilon+R_2})## then from ##\tilde{i}=\frac{\tilde{v}}{z}##

$$\tilde{i}=\frac{ve^{-j\phi}}{\sqrt{(R_\varepsilon+R_2)^2+(a+b)^2}} \\
i=\frac{v\cos(\phi)}{\sqrt{(R_\varepsilon+R_2)^2+(a+b)^2}}
$$

now for b) would the non-dc power dissipated in the second resistor be ##P=i\Im{(R_2)}=ibj##?
Only the real part of the impedance dissipates power. Check your last formula. Even the dimension is incorrect.
 
Last edited by a moderator:
  • Like
Likes Potatochip911
ehild said:
Only the real part of the impedance dissipates power. Check your last formula. Even the dimension is incorrect.
Whoops I also wrote ##P=IR## instead of ##P_L=i^2R_L##, so it should be ##P=i^2R_L## then?
 
Potatochip911 said:
Whoops I also wrote ##P=IR## instead of ##P_L=i^2R_L##, so it should be ##P=i^2R_L## then?
Yes, if you mean that RL is the real part of z2. And you do not need the cosine term in the expression of the current as the voltage through RL is in phase with the current. You need to use the rms value of the voltage.
 
  • Like
Likes Potatochip911
ehild said:
Yes, if you mean that RL is the real part of z2. And you do not need the cosine term in the expression of the current as the voltage through RL is in phase with the current.
Yep & then I believe the power dissipated will be at a maximum when the two resistances are complex conjugates of the other since then the part of the denominator related to the imaginary numbers will go to 0.
 
Potatochip911 said:
Yep & then I believe the power dissipated will be at a maximum when the two resistances are complex conjugates of the other since then the part of the denominator related to the imaginary numbers will go to 0.
Yes, it is right.
Do not use the word resistance for a complex impedance. The impedance of the source must be complex conjugate of the loading impedance.
 
  • Like
Likes Potatochip911
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top