fauboca
- 157
- 0
Trying to remember how to use the definition of a complex limit.
\lim_{\Delta z\to 0}\frac{f(z+h)-f(z)}{\Delta z}
f(z) = |z| = \sqrt{x^2+y^2}
\Delta z = \Delta x + i\Delta y
\lim_{\Delta x\to 0}\frac{\sqrt{(x+\Delta x)^2+(y+\Delta y)^2}- \sqrt{x^2+y^2}}{\Delta x}
Is that correct? Or do I just have the delta x with the x? Or is there a x + delta x and y + delta y?
Thanks.
\lim_{\Delta z\to 0}\frac{f(z+h)-f(z)}{\Delta z}
f(z) = |z| = \sqrt{x^2+y^2}
\Delta z = \Delta x + i\Delta y
\lim_{\Delta x\to 0}\frac{\sqrt{(x+\Delta x)^2+(y+\Delta y)^2}- \sqrt{x^2+y^2}}{\Delta x}
Is that correct? Or do I just have the delta x with the x? Or is there a x + delta x and y + delta y?
Thanks.