Complex numbers : quadratic equation

chwala
Gold Member
Messages
2,825
Reaction score
413

Homework Statement


Showing all necessary working solve the equation ##iz^2+2z-3i=0## giving your answer in the form ##x+iy## where x and y are real and exact,

Homework Equations

The Attempt at a Solution


##iz^2+2z-3i=0, z^2+(2/i)z-3=0##,using quadratic formula →##(-2/i± √8)/2 , z= √2+1/i## and ##√2-1/i## is this correct?
 
Last edited by a moderator:
Physics news on Phys.org
chwala said:

Homework Statement


Showing all necessary working solve the equation ##iz^2+2z-3i=0## giving your answer in the form ##x+iy## where x and y are real and exact,

Homework Equations

The Attempt at a Solution


##iz^2+2z-3i=0, z^2+(2/i)z-3=0##,using quadratic formula →##(-2/i± √8)/2 , z= √2+1/i## and ##√2-1/i## is this correct?
I think in order to answer in the form x + i y, you need to rationalize your answers above.

https://mathway.com/examples/Linear.../Rationalizing-with-Complex-Conjugates?id=272
 
Last edited by a moderator:
ok we have ## √2+1/i= (√2i+1)/i ## multiplying numerator and denominator by i we get ## (-√2+1i)/-1 = √2-i ##and → ##√2+i## respectively
 
chwala said:

Homework Statement


Showing all necessary working solve the equation ##iz^2+2z-3i=0## giving your answer in the form ##x+iy## where x and y are real and exact,

Homework Equations

The Attempt at a Solution


##iz^2+2z-3i=0, z^2+(2/i)z-3=0##,using quadratic formula →##(-2/i± √8)/2 , z= √2+1/i## and ##√2-1/i## is this correct?
Double check your arithmetic for the z-values which you calculated.
 
Last edited by a moderator:
still getting ## (-√2+i)/-1= √2-i##
 
Up to z=(-2/i± √8)/2 it is correct. Dividing by 2, you get -1/i ±√2. What is -1/i? Remember i was defined so i2=-1.
 
  • Like
Likes chwala
chwala said:

Homework Statement


Showing all necessary working solve the equation ##iz^2+2z-3i=0## giving your answer in the form ##x+iy## where x and y are real and exact,

Homework Equations

The Attempt at a Solution


##iz^2+2z-3i=0, z^2+(2/i)z-3=0##,using quadratic formula →##(-2/i± √8)/2 , z= √2+1/i## and ##√2-1/i## is this correct?

If I were doing it I would first multiply the original equation by ##-i## to get ##z^2 -2 i z -3=0##, which is a tinier bit simpler to work with.
 
  • Like
Likes chwala and SammyS
In fact you can check your answers by plugging in the solutions you found for z. Another way is to let wolframalpha solve it for you.
 
  • Like
Likes chwala
Ray your approach to me looks good.
##z^2-2iz-3=0, ⇒((-2i±√(-4+12))/2⇒(-2i±2√2)/2⇒√2±i##
##z=√2+i, √2-i##
which is still the same as the solution i got earlier.
 
  • #10
chwala said:
Ray your approach to me looks good.
##z^2-2iz-3=0, ⇒((-2i±√(-4+12))/2⇒(-2i±2√2)/2⇒√2±i##
##z=√2+i, √2-i##
which is still the same as the solution i got earlier.
Ooooh! It's so subtle, you're still missing it!

You got ##z = \frac{(-2i\, ±\, 2\sqrt{2})}{2}## which you say is the same as ##z = \sqrt{2}\, ±\, i##
 
  • Like
Likes chwala
  • #11
lol##z=-i+√2, z=-i-√2## ⇒##z=√2-i, z=-√2-i##
Mathway gives solution as ##z=√2-i##
 
  • #12
on another point, if i hadn't multiplied the original equation by ##-i##, are we saying that we can't get alternative solution(s)? just a thought, like the way i had done it, or are we going to get the same solution as found in post11?
 
  • #13
post 9 looks wrong to me ...using the quadratic formula:, ##z=(2i±2√2)/2##
and subsequently everything following from it.
 
  • #14
from post 13:, ##z=i±√2## which agrees with my earlier post number 3. Advice please?
 
  • #15
chwala said:
from post 13:, ##z=i±√2## which agrees with my earlier post number 3. Advice please?
##z = i\, ±\, \sqrt{2} ## (Post 14) is not the same as ##z=\sqrt{2}\,±\,i## (Post 3).

You can't flip where the ± goes in the expression.
 
  • #16
ok we have:, either ##z=√2+i, z=-√2+i##
 
  • #17
look at my post 1;, it should be correct, was my rationalization wrong? this is how i did it,
the original equation, ##iz^2+2z-3i=0,## i divided each term by ##i##, i got ,## z^2+(2/i)z-3=0##, on using the quadratic formula i got ## z=((-2/i)±√(-4-4(1)(-3))/2, →((-2/i)±2√2)/2→(-1/i)±√2##⇒
##z=(-1/i)+√2, z=(-1/i)-√2##,
⇒##z=(-1+√2 i)/i, z=(-1-√2 i)/i##,
on multiplying the numerator and denominator by ##i##, we have
##z=-i-√2, z=-i+√2##⇒ ##z=-√2-i, z=√2-i##
mathway gives solution as ##z=√2-i##, that is why i had mentioned earlier in post (12), if there is a possibility of many solutions to this problem dependant on the approach used.
 
Last edited:
  • #18
chwala said:
look at my post 1;, it should be correct, was my rationalization wrong? this is how i did it,
There's nothing wrong with rationalizing ##\frac{1}{i}## by multiplying that term by ##\frac{i}{i}##.

That shouldn't change the fact that the quadratic formula gave ##z = (\frac{\frac{-2}{i}±\sqrt{8}}{2})##.
You can rationalize the imaginary term without affecting the sign of the real term.
 
  • #19
steam thanks a lot, kindly look at my post number 1 and post number 3. Which means i was correct from that point.
 
  • #20
chwala said:
steam thanks a lot, kindly look at my post number 1 and post number 3. Which means i was correct from that point.
That's just it. The problem starts in Post #1 and carries over into Post #3.

You had:
chwala said:
... using quadratic formula →(-2/i± √8)/2 ,
which is correct. Then you wrote

##z= √2+1/i## and ##√2-1/i## is this correct?
which is not correct, and not because of how you rationalized the imaginary term in z above.

It's not correct because you moved the ± from in front of the square root and put it in front of the imaginary term.

It's like saying 4 ± 6 = 6 ± 4. You can check this example and see that while 4 + 6 = 6 + 4, the converse 4 - 6 ≠ 6 - 4. It's a very subtle distinction, but one which nevertheless must be made.
 
  • #21
agreed i can see the mistake.
 
  • #22
I can see my mistake, thanks again.
 
  • #23
chwala said:
I can see my mistake, thanks again.
You're welcome. Good luck.
 
  • Like
Likes chwala
Back
Top