Complex Variable-definite integral

  • Thread starter Thread starter Microzero
  • Start date Start date
  • Tags Tags
    Complex Integral
Microzero
Messages
21
Reaction score
0
Complex Variable---definite integral

Show that
f(k) = \frac{1}{2i\pi} \int^{\infty}_{-\infty} \frac{e^{ikx}}{x-i\epsilon}dx =

1, if k>0
0, if k<0

where \epsilon > 0

The attempt at a solution

1st. step:
Consider : \oint^{\infty}_{-\infty} \frac{e^{ikz}}{z-i\epsilon}dz

the residule is : e^(-k\epsilon)

so \int^{\infty}_{-\infty} \frac{e^{ikx}}{x-i\epsilon}dx

= {2i\pi} e^(-k\epsilon)

\frac{1}{2i\pi} \int^{\infty}_{-\infty} \frac{e^{ikx}}{x-i\epsilon}dx

= e^(-k\epsilon)
 
Physics news on Phys.org


Microzero said:
Show that
f(k) = \frac{1}{2i\pi} \int^{\infty}_{-\infty} \frac{e^{ikx}}{x-i\epsilon}dx =

1, if k>0
0, if k<0

where \epsilon > 0

The attempt at a solution

1st. step:
Consider : \oint^{\infty}_{-\infty} \frac{e^{ikz}}{z-i\epsilon}dz
This makes no sense. What contour are you integrating over?

the residule is : e^(-k\epsilon)

so \int^{\infty}_{-\infty} \frac{e^{ikx}}{x-i\epsilon}dx

= {2i\pi} e^(-k\epsilon)

\frac{1}{2i\pi} \int^{\infty}_{-\infty} \frac{e^{ikx}}{x-i\epsilon}dx

= e^(-k\epsilon)
 


um...the pole is at z= iε
so i find the residule at z=iε
 
Back
Top