Complex Variable-definite integral

  • Thread starter Thread starter Microzero
  • Start date Start date
  • Tags Tags
    Complex Integral
Microzero
Messages
21
Reaction score
0
Complex Variable---definite integral

Show that
f(k) = \frac{1}{2i\pi} \int^{\infty}_{-\infty} \frac{e^{ikx}}{x-i\epsilon}dx =

1, if k>0
0, if k<0

where \epsilon > 0

The attempt at a solution

1st. step:
Consider : \oint^{\infty}_{-\infty} \frac{e^{ikz}}{z-i\epsilon}dz

the residule is : e^(-k\epsilon)

so \int^{\infty}_{-\infty} \frac{e^{ikx}}{x-i\epsilon}dx

= {2i\pi} e^(-k\epsilon)

\frac{1}{2i\pi} \int^{\infty}_{-\infty} \frac{e^{ikx}}{x-i\epsilon}dx

= e^(-k\epsilon)
 
Physics news on Phys.org


Microzero said:
Show that
f(k) = \frac{1}{2i\pi} \int^{\infty}_{-\infty} \frac{e^{ikx}}{x-i\epsilon}dx =

1, if k>0
0, if k<0

where \epsilon > 0

The attempt at a solution

1st. step:
Consider : \oint^{\infty}_{-\infty} \frac{e^{ikz}}{z-i\epsilon}dz
This makes no sense. What contour are you integrating over?

the residule is : e^(-k\epsilon)

so \int^{\infty}_{-\infty} \frac{e^{ikx}}{x-i\epsilon}dx

= {2i\pi} e^(-k\epsilon)

\frac{1}{2i\pi} \int^{\infty}_{-\infty} \frac{e^{ikx}}{x-i\epsilon}dx

= e^(-k\epsilon)
 


um...the pole is at z= iε
so i find the residule at z=iε
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top