(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Proof that [tex]f(z)=\sqrt{z}=e^{\frac{\ln z}{2}}[/tex] with logarithm branch [tex][0,2\pi)[/tex]. Then [tex]f[/tex] maps horizontal and vertical lines in [tex]A=\mathbb{C}-\{\mathbb{R}^{+}\cup\{0\}\}[/tex] on hyperbola branches.

2. Relevant equations

I have that [tex]\ln_{[0,2\pi)} (z)=\ln\vert z\vert+i\mathop{\rm arg}\nolimits_{[0,2\pi)} (z)[/tex]

3. The attempt at a solution

I have tried to proof it directly, that means to describe vertical lines with [tex]z(y)=(a,y)[/tex] and horizontal ones with [tex]w(x)=(x,a)[/tex] and substitute in [tex]f[/tex]. That produces an horrific expression that I can't reduce to an hyperbola. What can I do?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Complex Variables. Complex square root function

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**