Complex variables, maximum value

babyrudin
Messages
8
Reaction score
0

Homework Equations


Let w \in C be a fixed complex number with |w|<1. Let
f(z)=\frac{z-w}{1-\bar{w}z}.
Calculate its maximum value in the region |z| \leq 1.

The Attempt at a Solution


How should I approach this? Not sure if maximum modulus principle is of much help.
 
Physics news on Phys.org
Any idea on this?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
13
Views
2K
Replies
4
Views
1K
Replies
2
Views
2K
Replies
8
Views
2K
Replies
5
Views
2K
Replies
5
Views
2K
Back
Top