Computation about Gaussian and Dirac Delta Function

keliu
Messages
2
Reaction score
0
I have a Gaussian distribution about t, say, N(t; μ, σ), and a a Dirac Delta Function δ(t).

Then how can I compute: N(t; μ, σ) * δ(t > 0)

Any clues? Or recommender some materials for me to read?

Thanks!
 
Mathematics news on Phys.org
I've never seen the notation δ(t > 0) for a Dirac delta function, what do you mean by this? Also, Dirac delta functions are not really functions (they are "distributions") and should not really appear outside of an integral, so I'm not sure what you're trying to compute...maybe you could specify what your motivations are for looking at this quantity?
 
In fact I am reading a paper about Microsoft's Adpredictor model. And here is a web article about the model's derivative process.

In the Step 7 of the web article, the author says that :
p(t) = N(t; μ, σ2)δ(y = sign(t)) and when y = 1, p(t) = N(t; μ, σ2)δ(t > 0) and then t has a truncated normal distribution. I don't understand how he could do that how he finish the full step 7.

Because the blog does not have any contact information about the owner, so I came here.

Thanks!
 
I...I can't make heads or tails of that at all, sorry. Hopefully someone better versed in this than me can help you.
 
As far as I can tell from the paper, it seems like either they goofed or the rendering in the pdf file had a problem. I could be wrong, but it seems to me that the two "delta" equations on the fourth page should read:
<br /> p(s|\mathbf{x,w}) = \delta(s - \mathbf{w^T x}).<br />
and
<br /> p(y|t)= \delta(y - sign(t)).<br />
These interpretations seem consistent with the words that precede each equation. jason
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top