errordude
- 17
- 0
suppose, s_{n}(f;t) = \sum_{k=-n}^{n}\widehat{f}(k)e^{ikt}
and
\sigma_{N}(f;t)= \frac{1}{N+1}\sum_{n=0}^{N}s_{n}(f;t).
how do i get from this \sigma_{N}(f;t)= \frac{1}{N+1}\sum_{n=0}^{N}s_{n}(f;t).
to this
\sigma_{N}(f;t)= \sum_{n=-N}^{N}(1-\frac{|n|}{N+1})\widehat{f}(n)e^{int}
obviously one starts with:
\sigma_{N}(f;t)=\frac{1}{N+1}\sum_{n=0}^{N}\sum_{k=-n}^{n}\widehat{f}(k)e^{ikt}
thanks!
and
\sigma_{N}(f;t)= \frac{1}{N+1}\sum_{n=0}^{N}s_{n}(f;t).
how do i get from this \sigma_{N}(f;t)= \frac{1}{N+1}\sum_{n=0}^{N}s_{n}(f;t).
to this
\sigma_{N}(f;t)= \sum_{n=-N}^{N}(1-\frac{|n|}{N+1})\widehat{f}(n)e^{int}
obviously one starts with:
\sigma_{N}(f;t)=\frac{1}{N+1}\sum_{n=0}^{N}\sum_{k=-n}^{n}\widehat{f}(k)e^{ikt}
thanks!