Conceptual questions about Angular Momentum Conservation and torque

AI Thread Summary
The discussion focuses on the conservation of angular momentum and torque, particularly in scenarios involving an expanding pizza dough and a rotating bicycle wheel on a platform. It clarifies that the angular momentum vector (L) will align with the angular velocity (ω) unless the dough folds during its spin. The conversation also addresses how vertical angular momentum must be conserved when lifting the wheel, while horizontal angular momentum may not be conserved due to external torques acting on the system. Additionally, it explains that the direction of torque influences motion, with specific examples illustrating the differences in behavior between the wheel and a fishing rod. Overall, the principles of angular momentum conservation and torque direction are emphasized throughout the analysis.
Ayandas1246
Messages
2
Reaction score
0
List of relevant equations:
Angular Momentum = L (vector) = r(vector) x p(vector)
Angular velocity of rotating object = w(vector), direction found using right hand rule. Torque = T(vector) = dL(vector)/dt
I have a few questions about torque and angular momentum direction and conservation. The first has to do with an expanding Pizza dough which stretches after being tossed in the air. If I analyze a point mass on the outer edge of the dough, assuming the dough stays perfectly flat, is it safe to say that although the angle between the linear momentum vector and the r vector from the origin (the center of mass of the dough) is not 90 degrees, L still points in the same direction as w? Is it correct to say that L will only not point in the same direction as omega if the dough edge folds up or down as the dough spins and expands? My second set of questions pertains to the case in which we stand on a platform free to rotate and hold a rotating bicycle wheel then lift the wheel. (See attached file)
As drawn in the image, the system begins with some horizontal angular momentum L and a vertical angular momentum of zero. So in order for vertical angular momentum to be conserved between ti and tf, the person and platform must rotate with a downward angular momentum of magnitude L. But what about horizontal angular momentum? Was it not conserved? Additionally, when analyzing the same system using torque, why does the direction of the torque dictate the direction of the motion? If the wheel is raised between ti and tf, the direction of the force vector is determined by the direction of the change in angular momentum, which is straight up. So the force is pointed up, and by the right-hand rule, the torque points out of the page. But why is this the direction of motion? If we held a fishing rod instead of a spinning wheel, our force would point up and the torque we exert on the fish at the end of the rod would point out of the page, but the fish would move in an arc above us! Not into the page. Why does the wheel's angular momentum cause this motion in the direction of the torque? Finally, if the person were to start at ti with the wheel above their head (facing up) with zero angular momentum, then spin it such that at tf the wheel has an angular momentum of magnitude L pointing up, why wouldn't the platform and person move to compensate, resulting in a balancing L that points down? Wouldn't angular momentum in the vertical direction need to stay at zero? Apologies for the deluge of questions, and thank you tremendously for your help!
 

Attachments

  • IMG-2730 (1).jpg
    IMG-2730 (1).jpg
    57.2 KB · Views: 173
Physics news on Phys.org
Ayandas1246 said:
If I analyze a point mass on the outer edge of the dough, assuming the dough stays perfectly flat, is it safe to say that although the angle between the linear momentum vector and the r vector from the origin (the center of mass of the dough) is not 90 degrees, L still points in the same direction as w?
The angular momentum vector is at right angles to both r and p. Or saying it differently, it is perpendicular to the plane containing both the radius and momentum vectors. So yes, it is still in the same direction as ##\omega##.

Note that you can get an omega here by clicking the ##\sqrt{x}## icon and choosing ω or by using ##\omega## and getting ##\omega##.

Ayandas1246 said:
Is it correct to say that L will only not point in the same direction as omega if the dough edge folds up or down as the dough spins and expands?
Yes.

Ayandas1246 said:
As drawn in the image, the system begins with some horizontal angular momentum L and a vertical angular momentum of zero. So in order for vertical angular momentum to be conserved between ti and tf, the person and platform must rotate with a downward angular momentum of magnitude L. But what about horizontal angular momentum? Was it not conserved?
Without looking at the drawing, the typical arrangement is with a person standing on a platform that is free to rotate about a vertical axis. That platform is not free to rotate about a horizontal axis. So you will normally have a horizontal torque that is strong enough to keep the person vertical. Because an external torque is present, angular momentum about a horizontal axis will not be conserved.
 
jbriggs444 said:
The angular momentum vector is at right angles to both r and p. Or saying it differently, it is perpendicular to the plane containing both the radius and momentum vectors. So yes, it is still in the same direction as ##\omega##.

Note that you can get an omega here by clicking the ##\sqrt{x}## icon and choosing ω or by using ##\omega## and getting ##\omega##.Yes.Without looking at the drawing, the typical arrangement is with a person standing on a platform that is free to rotate about a vertical axis. That platform is not free to rotate about a horizontal axis. So you will normally have a horizontal torque that is strong enough to keep the person vertical. Because an external torque is present, angular momentum about a horizontal axis will not be conserved.
Thank you very much for your answers!
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top