Conditional rotation in the bloch sphere with a 2-qubit system

Verdict
Messages
114
Reaction score
0

Homework Statement


The problem is as follows. I have two spins, m_S and m_I. The first spin can either be \uparrow or \downarrow , and the second spin can be -1, 0 or 1.
Now, I envision the situation as the first spin being on the bloch sphere, with up up to and down at the bottom.
What I want to do is as follows:
Given an initial situation \left|\psi\right> = \left|\psi_1\right> \otimes \left|\psi_2\right> = \left|\uparrow\right> \otimes \frac{1}{\sqrt{3}}\left( \left|-1\right> + \left|0\right>+ \left|1\right> \right)

I want to rotate m_S around the x-axis by pi/2, followed by a waiting time t. In this waiting time t, I want m_S to rotate around the z-axis, conditional on the state of m_I. If m_I is -1, m_S should rotate clockwise, if it is 0, m_S should not rotate, and if it is 1, m_S should rotate anticlockwise.

After this has happened, I want to perform another rotation, this time around the y-axis. This way, the state of m_S becomes entangled with the state m_I.

The Attempt at a Solution



Now, the rotation part I know how to do, as that can simply be written as

\left|\psi\right> = R_x (\frac{\pi}{2}) \left|\psi_1\right> \otimes \left|\psi_2\right> = \frac{1}{\sqrt{2}} \left( \left|\uparrow\right> -i \left|\downarrow\right> \right) \otimes \frac{1}{\sqrt{3}}\left( \left|-1\right> + \left|0\right>+ \left|1\right> \right)

But here I get to the point of the conditional rotation, and I don't know how to proceed. Could anyone help me start with this?
 
Last edited:
Physics news on Phys.org
Distribute out the tensor product. \sum_i \alpha_i \left|i \right> \otimes \sum_j \beta_j \left|j \right>=\sum_{i,j} \alpha_i \beta_j \left|i\right> \otimes \left|j \right>. Then apply the controlled operation to every basis state.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top