Confidence Intervals for not integers numbers ratio

fatgianlu
Messages
2
Reaction score
2
Hi, I’m having a problem with a particular case of binomial proportion.
I want calculate a confidence Intervals for a binomial proportion for an efficiency. This kind of intervals are usually defined for ratios between integers numbers but in my case I had to subtract from both numerators and denominators some decimals numbers. I’d like to use Clopper Pearson method and I’m also able to extract the limits for these decimals numbers but I don’t know how to legitimise this calculation theoretically and if I can. Do you know if there is some way to threat confidence intervals properly using decimals numbers? Or some paper that talks about this issue?
 
Physics news on Phys.org
fatgianlu said:
Hi, I’m having a problem with a particular case of binomial proportion.
I want calculate a confidence Intervals for a binomial proportion for an efficiency. This kind of intervals are usually defined for ratios between integers numbers but in my case I had to subtract from both numerators and denominators some decimals numbers. I’d like to use Clopper Pearson method and I’m also able to extract the limits for these decimals numbers but I don’t know how to legitimise this calculation theoretically and if I can. Do you know if there is some way to threat confidence intervals properly using decimals numbers? Or some paper that talks about this issue?
It's not clear to me what you're asking. It might be helpful if you told us the problem you're trying to solve.
 
  • Like
Likes mfb
Ok,
I'm calculating an efficiency to pass a selection of some data. In this data there is some background that I want to subtract. In order to do so I have a simulated sample of the background. This simualted sample is scaled with several weights. (normalization, efficiency correction, etc..) that leads to have not integers numbers. When i want to calculate the efficency, i.e. ratio between the successes in the trials, I have to cope with not integers numbers. When I want to calculate an uncertainty of a proportion I usually use the Cloipper-Pearson method that is derived form a binomial distribution. The binomial distribution is a discrete probability distribtion and so is not correct in my case where i have not integers but continuous numbers. What I'd like to have is a method to calculate a confidence-level in case of a proportion between continuous numbers. Or much better, a way to take into account a subtraction of weighted event. I read something about using the beta distribution but probably I should improve my stats knowledge... I don't know if the problem is clear.
 
fatgianlu said:
Or much better, a way to take into account a subtraction of weighted event.
That will be necessary, so I don't think the non-integer values are the main issue.
You can still use the basic approach: calculate efficiency values where the probability to observe more/fewer events than observed is below some threshold (2.5% or 5% or whatever). The probability will also have to take the background subtraction and its uncertainty into account.

How many events do you have? If you have enough, you can probably ignore the discrete nature of the observed events, and use conventional continuous methods.

Do you have proper uncertainties for the MC background sample?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top