Confirming Convergence: $\sum \frac{(-1)^{n+1}(n^2+4)^{1/3}}{(n^5+1)^{1/2}}$

  • Thread starter Thread starter duki
  • Start date Start date
  • Tags Tags
    Convergence
duki
Messages
264
Reaction score
0

Homework Statement



\sum \frac{(-1)^{n+1}(n^2+4)^{1/3}}{(n^5+1)^{1/2}}

Homework Equations



The Attempt at a Solution



I got that it converges, because the limit is 0
Is that right?
 
Physics news on Phys.org
You apparently are using the alternating series test. Have you established all of the following?
The a_n's are all positive.
a_n >= a_(n+1) for all n.
lim a_n = 0, as n approaches infinity.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top