MHB Confused about law of total variance

AI Thread Summary
The discussion revolves around a confusion regarding the law of total variance in a lottery problem involving different states based on die rolls. The original poster calculated the expected value and variance directly and found discrepancies when applying the law of total variance. After some back-and-forth, it was revealed that a calculation error occurred in determining E(Var(X|S)), which was corrected to 328333.33, aligning the results. The final calculations confirmed that the law of total variance holds true in this scenario. The thread highlights the importance of careful calculations in probability problems.
Probabilist1
Messages
2
Reaction score
0
Ok, so I got this question on an exam some time ago and I still don't understand why I didn't get it (I can't remember the exact question, but this is very similar):

"A lottery winning amount is determined in the following manner: first a die is thrown. If the result is 1 or 2, the lottery machine is set to state A. If the result is 3 or 4, the machine is set to state B. If it is 5 or 6, the machine is set to C. Now in state A, the lottery amount is 500 with probability 0.2, 1000 with probability 0.5, 2000 with probability 0.3. In state B, the amount is 500 with probability 0.3, 1000 with probability 0.4, 2000 with probability 0.3. In state C, the amount is 500 with pr. 0.1, 1000 with pr. 0.3, 2000 with pr. 0.6. Determine the *variance* of the amount" (yes, it's a long question...)

Doing this directly (i.e. using probabilities (1/3)(0.2+0.3+0.1) for 500, etc.) I get E(amount)=1300 and Var(amount)=360000

However, if I try using the law of total variance by conditioning on the state, I get a different result. Letting S represent the lottery state and X the amount,

E(X|S)=1200 if S=A, 1150 if S=B, 1550 if S=C
Var(X|S)=310000 if S=A, 352500 if S=B, 322500 if S=C
E(E(X|S))=1300
Var(E(X|S))=31666.66
E(Var(X|S))=328166.66

From the law of total variance, we should have Var(X)=E(Var(X|S))+Var(E(X|S)) right? But that gives 31666.66+328166.66=359833.33 which is not 360000... am I doing a stupid calculation mistake somewhere??
 
Mathematics news on Phys.org
Hi Probabilist, (Wave)

Welcome to MHB!

I get the same thing when doing this the "direct way", as you put it. :)

Can you show your work for how you calculated Var(X|S)?
 
Oops... I was sure I double-checked all my work, but it seems I made a calculation error when calculating E(Var(X|S)), correct value is 328333.33 which works out. Very sorry, I don't make that kind of mistake usually.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top