Confusion on relative velocity sign

  • Thread starter Thread starter niko_niko
  • Start date Start date
  • Tags Tags
    2d kinematics
AI Thread Summary
The discussion centers on the confusion regarding the relative velocity of Chris swimming upstream in a current. The textbook states that Chris's upstream velocity relative to Earth is c-v, which some participants question, suggesting it should be v-c instead. The key point is that if downstream is considered positive, then upstream must be negative, leading to the conclusion that the correct expression for upstream speed is indeed c-v. Participants note that the choice of coordinate system affects the interpretation of velocity signs. Overall, clarity in variable naming and direction conventions is emphasized to avoid such confusion.
niko_niko
Messages
16
Reaction score
1
Homework Statement
Problem: Two swimmers, Chris and Sarah, start together at the same point on the bank of a wide stream that flows with a speed v. Both move at the same speed c (where c > v) relative to the water. Chris swims downstream a distance L and then upstream the same distance.
Relevant Equations
v_PA = v_PB + u_BA
The downstream part is no problem: c_E = c + v.
My only question is why is the upstream velocity of Chris relative to the Earth c-v, as said by the textbook, and not v-c? Assuming v is to the right and positive, doesn't c become negative since it is in the opposite direction?
 
Physics news on Phys.org
niko_niko said:
Homework Statement: Problem: Two swimmers, Chris and Sarah, start together at the same point on the bank of a wide stream that flows with a speed v. Both move at the same speed c (where c > v) relative to the water. Chris swims downstream a distance L and then upstream the same distance.
Relevant Equations: v_PA = v_PB + u_BA

The downstream part is no problem: c_E = c + v.
My only question is why is the upstream velocity of Chris relative to the Earth c-v, as said by the textbook, and not v-c? Assuming v is to the right and positive, doesn't c become negative since it is in the opposite direction?
In terms of velocity, if downstream is positive, then upstream is negative. If you change the sign of ##c##, then you are changing the positive direction.
 
The upstream speed is, of course, ##v -c##, as speed is non-negative.
 
PeroK said:
The upstream speed is, of course, ##v -c##, as speed is non-negative.
For some reason, the current speed is ##v## while the swimmer speed is ##c##. With ##c > v##, I make the upstream speed ##c-v##.

Authors would be well advised to pick mnemonic variable names.

If the textbook uses the phrase "upstream velocity", this could be interpreted to indicate the use of an upstream-positive coordinate system. So the positive value ##c-v## would be appropriate.
 
  • Like
Likes Gavran and PeroK
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Back
Top