Conjugation of Cycles in Permutation Groups: Proving the Property with Examples

  • Thread starter Thread starter gtfitzpatrick
  • Start date Start date
  • Tags Tags
    Cycles
gtfitzpatrick
Messages
372
Reaction score
0

Homework Statement



show that if ##(x_1 x_2 ... x_k)## is a cycle in ##S_n## ( ##k \leq n## ) and ##\pi## is any permutation in ##S_n## then ##\pi (x_1 x_2 ... x_k) \pi ^{-1} = ( \pi(x_1) \pi(x_2) ... \pi(x_k) )##

Homework Equations


The Attempt at a Solution



firstly is this question right?

i multiplied both sides by ##\pi^{-1}## and get

(x_1 x_2 ...x_k)\pi^{-1} = \pi^{-1} (\pi(x_1) \pi(x_2) ...\pi(x_k))

= \pi^{-1}\pi(x_1) \pi^{-1}\pi(x_2) ...\pi^{-1}\pi*x_k))
=(x_1 x_2 ... x_k)
which obviously isn't right?
 
Last edited by a moderator:
Physics news on Phys.org


The question is right.

You are making an error when you say \pi^{-1}(\pi(x_1),\pi(x_2),\dots,\pi(x_k))=(\pi^{-1}\pi(x_1),\pi^{-1}\pi(x_2),\dots,\pi^{-1}\pi(x_k)).

Try an example. \pi=(1 2 3),\sigma=(x_1,x_2,x_3,x_4,x_5)=(8 2 4 3 5), \pi^{-1}=(3 2 1).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top