e(ho0n3
- 1,349
- 0
[SOLVED] Consequence of Schwarz Inequality
Use the Schwarz inequality to demonstrate the following inequality:
\left(\sum_{j=1}^n |a_j + b_j|^2\right)^{1/2} \le \left(\sum_{j=1}^n |a_j|^2\right)^{1/2} + \left(\sum_{j=1}^n |b_j|^2\right)^{1/2}
The Schwarz inequality:
\left|\sum_{j=1}^n a_j \bar{b}_j\right|^2 \le \left(\sum_{j=1}^n |a_j|^2\right) \left(\sum_{j=1}^n |b_j|^2\right)
Expanding the term on the LHS, squaring both sides and simplifying the inequality of the problem produces:
\sum_{j=1}^n \Re(a_j\bar{b}_j) \le \left(\sum_{j=1}^n |a_j|^2\right) \left(\sum_{j=1}^n |b_j|^2\right)
At this point, I use the Schwarz inequality: If I can show that
\sum_{j=1}^n \Re(a_j\bar{b}_j) \le \left|\sum_{j=1}^n a_j \bar{b}_j\right|^2
then the problem is solved. a_j\bar{b}_j = \Re(a_j\bar{b}_j) + i \Im(a_j\bar{b}_j). Let \alpha be
\sum_{j=1}^n \Re(a_j\bar{b}_j)
and let \beta be
\sum_{j=1}^n \Im(a_j\bar{b}_j)
Then \alpha^2 \le |\alpha + i\beta|^2. I would like to think that \alpha \le \alpha^2, but this only works if \alpha \ge 1 which is not necessarily true. What can I do?
Homework Statement
Use the Schwarz inequality to demonstrate the following inequality:
\left(\sum_{j=1}^n |a_j + b_j|^2\right)^{1/2} \le \left(\sum_{j=1}^n |a_j|^2\right)^{1/2} + \left(\sum_{j=1}^n |b_j|^2\right)^{1/2}
Homework Equations
The Schwarz inequality:
\left|\sum_{j=1}^n a_j \bar{b}_j\right|^2 \le \left(\sum_{j=1}^n |a_j|^2\right) \left(\sum_{j=1}^n |b_j|^2\right)
The Attempt at a Solution
Expanding the term on the LHS, squaring both sides and simplifying the inequality of the problem produces:
\sum_{j=1}^n \Re(a_j\bar{b}_j) \le \left(\sum_{j=1}^n |a_j|^2\right) \left(\sum_{j=1}^n |b_j|^2\right)
At this point, I use the Schwarz inequality: If I can show that
\sum_{j=1}^n \Re(a_j\bar{b}_j) \le \left|\sum_{j=1}^n a_j \bar{b}_j\right|^2
then the problem is solved. a_j\bar{b}_j = \Re(a_j\bar{b}_j) + i \Im(a_j\bar{b}_j). Let \alpha be
\sum_{j=1}^n \Re(a_j\bar{b}_j)
and let \beta be
\sum_{j=1}^n \Im(a_j\bar{b}_j)
Then \alpha^2 \le |\alpha + i\beta|^2. I would like to think that \alpha \le \alpha^2, but this only works if \alpha \ge 1 which is not necessarily true. What can I do?