Constant Functions: ε-δ Proof for Continuity

Niles
Messages
1,834
Reaction score
0

Homework Statement


Hi all

How can I show that a constant function defined on a closed interval is continuous on that same interval using a ε-δ proof?

I have f(x)=c on the interval. Then I write

f(x)-f(a) = c-c = 0

for some point a in the interval. But what to do from here?
 
Physics news on Phys.org
This is a very easy proof. Isn't 0 < epsilon for any positive epsilon?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top